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Numb3rs
Prime Factorisation



2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, ...

Unique Factorisation  
(Fundamental Theorem of Arithmetic): 

∀a∈ Z, if a ≥ 2 then ∃! (p1,...,pt, d1,...,dt) s.t.  

p1 < ... < pt primes, d1,...,dt∈Z+, and a = p1d1 p2d2... ptdt

Recall: We already saw that prime factorisation exists  
(using strong induction)

Will prove uniqueness now

Primes
Definition: p∈Z is said to be a prime number if p ≥ 2 and the 

only positive factors of p are 1 and p itself



Primes
Definition: p∈Z is said to be a prime number if p ≥ 2 and the 

only positive factors of p are 1 and p itself

Since the only positive factors of p are 1, p, we have two 
cases: gcd(a,p) = 1 or gcd(a,p) = p.

If gcd(a,p) = p, then p|a ✓

If gcd(a,p) = 1, then ∃u,v s.t. 1 = ua+vp ⇒ b = uab + vpb  

                         ⇒ ∃k s.t.  b = ukp+vbp (since p|ab) ⇒ p|b 

Euclid’s Lemma 
∀a,b,p∈ Z s.t. p is prime (p | ab) → ( p|a ∨ p|b )    



Primes

Generalisation of Euclid’s Lemma (Prove by induction): 
∀a1,…, an, p∈ Z s.t. p is prime,  (p | a1⋅⋅⋅an) → ∃ i,  p|ai  

Uniqueness of prime factorisation: Suppose z is the smallest 
positive integer with two distinct prime factorisations as  
z = p1⋅⋅⋅pm = q1⋅⋅⋅qn. max{p1,…,pm} ≠ max{q1,…,qn} (Why?).

So w.l.o.g., pm > qi , i=1 to n                            But,

pm | q1⋅⋅⋅qn ⇒ pm | qi for some i (by Lemma). Contradiction!

Definition: p∈Z is said to be a prime number if p ≥ 2 and the 

only positive factors of p are 1 and p itself

Euclid’s Lemma 
∀a,b,p∈ Z s.t. p is prime (p | ab) → ( p|a ∨ p|b )    

⇒  pm ∤ qi , i=1 to n.



Divisors, Again

Suppose a = ∏p prime pαp and b = ∏p prime pβp  
(only finitely many primes p have αp > 0 or βp > 0)

a|b iff for every p, αp ≤ βp

a|b ⇒ b = aq where say, q = ∏p prime pγp 

    ⇒ for every p, βp = αp + γp  ≥ αp 

For every p,  αp ≤ βp  
     ⇒ for every p, γp := βp - αp ≥ 0 

     ⇒ b = aq where q = ∏p prime pγp 

     ⇒ a|b



GCD, Again
An alternate algorithm for gcd(a,b): Given the prime 
factorisation of a,b, construct that of gcd(a,b)

For each prime number p let αp and βp be its exponents in 
the factorisations of a and b resp. (Ignore p s.t. αp=βp=0)

Then γp = min(αp, βp) is p’s exponent in the prime 
factorisation of gcd(a,b)

2520 = 23 · 32 · 5 · 7 

3300 = 22 · 3 · 52 · 11 
gcd ( 2520, 3300 ) = 22·3·5

Not very practical compared to 
Euclid’s algorithm, as prime 
factorisation is not easy       
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Common Multiples
Common Multiple: c is a common multiple of a and b  
                      if a|c and b|c.

Least Common Multiple ( for a≠0 and b≠0 )  
    lcm(a,b) = smallest positive integer among the common   
    multiples of a and b

Well-defined: a⋅b is a positive common multiple of (a,b) 

(unless a=0 or b=0) and we restrict to positive multiples. So 
an integer in the range [1, a⋅b].

e.g. 36 = 22⋅32, 30 = 2⋅3⋅5. lcm(36,30) = 22⋅32⋅5 = 180



LCM as Tiling 
[Here all numbers are positive integers]

n is a common multiple of a & b, iff an a x b tile can be 
used to perfectly tile an n x n square 
 

LCM: smallest 
such square
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LCM from Factorisation
For each prime number p let αp and βp be its exponents in 
the factorisations of a and b resp. (Ignore p s.t. αp=βp=0)

Then λp = max(αp, βp) is p’s exponent in the prime 
factorisation of lcm(a,b)

2520 = 23⋅ 32⋅ 5 ⋅ 7 

3300 = 22⋅ 3 ⋅ 52⋅ 11 

lcm ( 2520, 3300 )  
      = 23⋅ 32⋅ 52⋅ 7 ⋅ 11

gcd(a,b) ⋅ lcm (a,b) = |a⋅b|   [Why?]
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