Numb3rs

Modular Arithmetic

Congruence

For a "modulus" m and two integers a and b, we say a = b (mod m) if ml(a-b)

- Typically, we shall consider modulus > 0
 - $a \equiv b \pmod{0} \leftrightarrow a=b$
 - $a \equiv b \pmod{1}$

Quotient-Remainder Theorem

For any two integers m and n, m≠0, there is a <u>unique</u> quotient q and remainder r (integers), such that $n = q \cdot m + r, \quad 0 \le r < |m|$

-2		-14	-13	-12	-11	-10	-9	-8
-1		_7		-5	Z r	-3	-2	-1
O	q	о О	1 1	² 2	3	4 4	5 5	6 6
1		7	8	9	10	11	12	13
2		14	15	16	17	18	19	20

rem(n,m)

m=7

Congruence

For a "modulus" m and two integers a and b, we say a = b (mod m) if ml(a-b)

- Olaim: $a = b \pmod{m}$ iff rem(a,m) = rem(b,m)
- Proof: Let rem(a,m) = r_1 , rem(b,m)= r_2 . Let a= q_1 m + r_1 and b= q_2 m + r_2 . Then a-b = (q_1-q_2) m + (r_1-r_2) .
 - \blacktriangleright a-b=qm \Rightarrow (r₁-r₂) = q'm. r₁,r₂ \in [0,m) \Rightarrow |r₁-r₂| < m \Rightarrow r₁=r₂
 - ho $r_1=r_2 \Rightarrow a-b=qm$ where $q=q_1-q_2$.

Congruence

For a "modulus" m and two integers a and b, we say $a = b \pmod{m}$ if $m \mid (a-b)$

distance between a&b is a multiple of m

a&b on same column

a&b have same

13	-12	-11	-10	-9	-8
-6	-5	r	-3	-2	-1
1	2	3	4	5	6
1	2	3	4	5	6

m=7

remainder w.r.t. m

8 10 9

 $11 \equiv 18 \pmod{7}$ $11 \equiv -10 \pmod{7}$

 $18 = -10 \pmod{7}$

15

16

17

Modular Arithmetic

- Fix a modulus m.
 Elements of the universe: columns in the "table" for m
- Let [a]_m stand for the column containing a

 - \circ e.g.: $[-17]_5 = [-2]_5 = [3]_5$
- \bullet We shall define operations in \mathbb{Z}_m , i.e., among the columns

Modular Addition

- Modular addition: $[a]_m +_m [b]_m ext{ } = [a+b]_m$
 - Well-defined? Or, are we defining the same element to have two different values?
 - - \bullet i.e., $m|(a-a') \land m|(b-b') \rightarrow m|((a+b) (a'+b'))$?

Modular Addition

- Modular addition: $[a]_m +_m [b]_m ≜ [a+b]_m$

Inherits various properties of standard addition: existence of identity and inverse, commutativity, associativity

Modular Addition

Every element a has an additive inverse -a, so that $a + (-a) \equiv 0 \pmod{m}$

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	თ	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

More generally, $a + x \equiv b \pmod{m}$ always has a solution, x = b-a

e.g. m = 5

Modular Multiplication

- Modular multiplication: $[a]_m$ ×_m $[b]_m$ ≜ $[a \cdot b]_m$
- [a]_m = [a']_m ∧ [b]_m = [b']_m → [a⋅b]_m = [a'⋅b']_m ?
 - Suppose a-a' = pm, b-b' = qm.
 - Then $a \cdot b = (pm+a')(qm+b') = (mpq+pa'+qb')m + a'b' \checkmark$

Modular Multiplication

- Modular multiplication: $[a]_m$ ×_m $[b]_m$ ≜ $[a \cdot b]_m$

Also commutative, associative

-14	-13	-12	-11	-10	-9	-8
-7	-6	-5	-4	-3	-2	-1
0	1	2	3	4	5	6
0	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20

-6 × -3
= 18
= 1 × 4
= 4 (mod 7)

identity of multiplication

Modular Multiplication

Sometimes, the product of two non-zero numbers can be zero!

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

			- C - C - C - C - C - C - C - C - C - C			
×	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

Sometimes, a number other than 1 can have a multiplicative inverse!

Ø e.g. m = 5

Modular Arithmetic

- Modular addition: $[a]_m +_m [b]_m ext{ } = [a+b]_m$
- Modular multiplication: $[a]_m$ ×_m $[b]_m$ ≜ $[a \cdot b]_m$
- Multiplicative Inverse! a has a multiplicative inverse modulo m iff a is <u>co-prime</u> with m.
 - $gcd(a,m)=1 \leftrightarrow \exists u,v \ au+mv=1 \leftrightarrow \exists u \ [a]_m \times_m [u]_m = [1]_m$
 - e.g. $[2]_9 \times_9 [5]_9 = [1]_9 \text{ so } [2]_9^{-1} = [5]_9 \text{ and } [5]_9^{-1} = [2]_9$
 - For a prime modulus m, all except [0]_m have inverses!