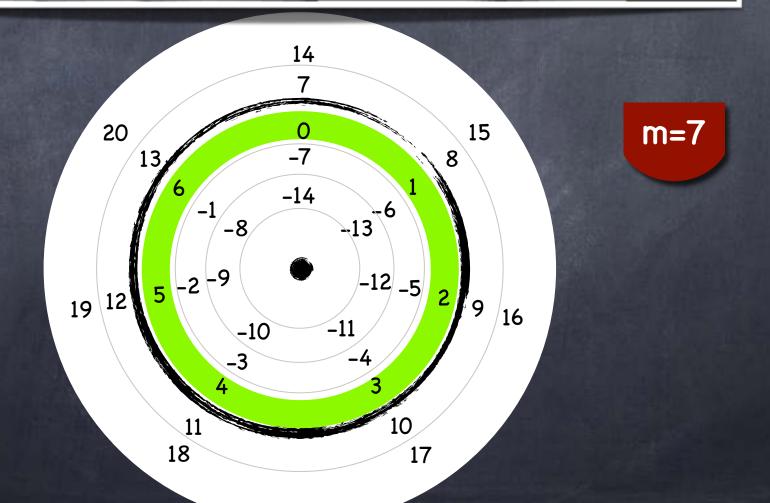
### Numb3rs

The Skippy Clock



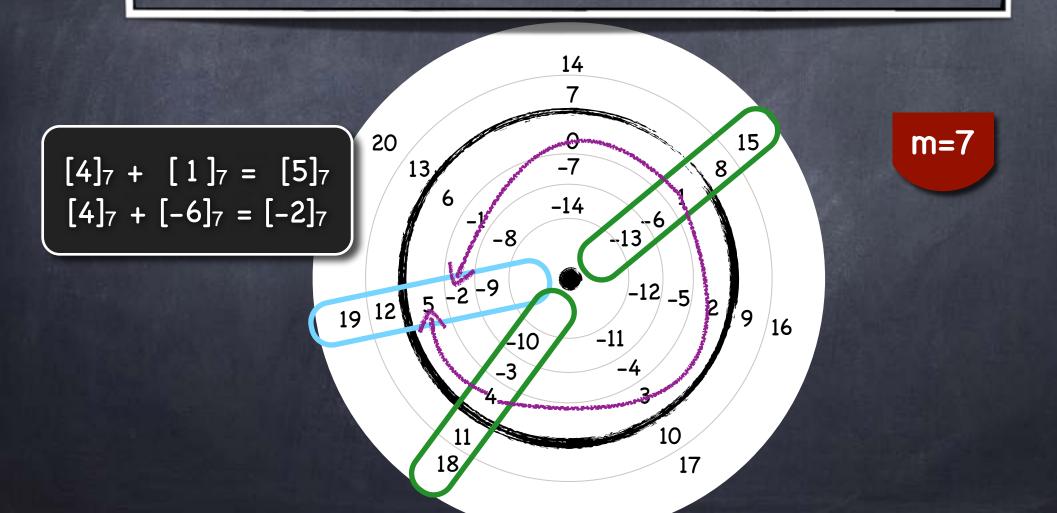
## Congruence Classes

 $[a]_m = \{ x \mid a = x \pmod{m} \}$ can be represented by rem(a,m)



#### Modular Addition

Modular addition:  $[a]_m +_m [b]_m = [a+b]_m$ 



- Has m hours on its dial, needle moves n hours at a time
- Will the needle reach all the hours?
- Iff needle reaches 1 (why?)

Iff gcd(m,n) = 1

- i.e., ∃t≥0 s.t. nt = 1 (mod m)
  - $t \in [0,m)$  s.t.  $nt = 1 \pmod{m}$

11

6

- gcd(m,n)=1 
   ↔ n-1 exists in  $\mathbb{Z}_m$

Has m hours on its dial, needle moves n hours at a time

Will the needle reach all the hours?

- $\odot$  Iff gcd(m,n) = 1
  - Then how long will it take to reach all the hours?
- If gcd(m,n)≠1, how many hours
   are reached?
- What is the first hour that gets repeated?



### Multiplication Table

Has m hours on its dial, needle moves n hours at a time

| ×  | 0 | 1  | 2  | 3  | 4                                 | 5                                                                      | 6   | 7    | 8  | 9   | 10   | 11   | 12   | 0    |  |  |  |
|----|---|----|----|----|-----------------------------------|------------------------------------------------------------------------|-----|------|----|-----|------|------|------|------|--|--|--|
| 0  | 0 | 0  | 0  | 0  | 0                                 | 0                                                                      | 0   | 0    | 0  | 0   | 0    | 0    | 0    | 12 1 |  |  |  |
| 1  | 0 | 1  | 2  | 3  | 4                                 | 5                                                                      | 6   | 7    | 8  | 9   | 10   | 11   | 12   | 11   |  |  |  |
| 2  | 0 | 2  | 4  | 6  | 8                                 | 10                                                                     | 12  | 1    | 3  | 5   | 7    | 9    | 11   |      |  |  |  |
| 3  | 0 | 3  | 6  | 9  | 12                                | 2                                                                      | 5   | 8    | 11 | 1   | 4    | 7    | 10   |      |  |  |  |
| 4  | 0 | 4  | 8  | 12 | 3                                 | acc                                                                    | l(m | a)_1 |    | n-1 | ovic | tc ( | in 7 |      |  |  |  |
| 5  | 0 | 5  | 10 | 2  | 7                                 | $\gcd(m,n)=1 \leftrightarrow n^{-1} \text{ exists (in } \mathbb{Z}_m)$ |     |      |    |     |      |      |      |      |  |  |  |
| 6  | 0 | 6  | 12 | 5  | 1:                                |                                                                        |     |      |    |     |      |      |      |      |  |  |  |
| 7  | 0 | 7  | 1  | 8  |                                   |                                                                        | _/\ | -    |    |     | - ح  | 12   | 0    |      |  |  |  |
| 8  | 0 | 8  | 3  | 11 | take $z=1$   $t = n^{-1}z$   10 5 |                                                                        |     |      |    |     |      |      |      |      |  |  |  |
| 9  | 0 | 9  | 5  | 1  | 10                                | 6                                                                      | 2   | 11   | 7  | 3   | 12   | 8    | 4    | m=13 |  |  |  |
| 10 | 0 | 10 | 7  | 4  | 1                                 | 11                                                                     | 8   | 5    | 2  | 12  | 9    | 6    | 3    |      |  |  |  |
| 11 | 0 | 11 | 9  | 7  | 5                                 | 3                                                                      | 1   | 12   | 10 | 8   | 6    | 4    | 2    |      |  |  |  |
| 12 | 0 | 12 | 11 | 10 | 9                                 | 8                                                                      | 7   | 6    | 5  | 4   | 3    | 2    | 1    |      |  |  |  |

Has m hours on its dial, needle moves n hours at a time

Will the needle reach all the hours?

Iff gcd(m,n) = 1

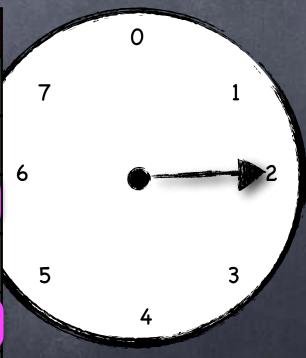
- m-1 steps
- Then how long will it take to reach all the hours?
- If gcd(m,n)≠1, how many hours
   are reached?
- What is the first hour that gets repeated?



#### With Common Factors

Has m hours on its dial, needle moves n hours at a time

| × | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | თ | 4 | 5 | 6 | 7 |
| 2 | 0 | 2 | 4 | 6 | 0 | 2 | 4 | 6 |
| 3 | 0 | 3 | 6 | 1 | 4 | 7 | 2 | 5 |
| 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 |
| 5 | 0 | 5 | 2 | 7 | 4 | 1 | 6 | 3 |
| 6 | 0 | 6 | 4 | 2 | 0 | 6 | 4 | 2 |
| 7 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |



m=8

#### With Common Factors

- Has m hours on its dial, needle moves n hours at a time
- Say, gcd(m,n) = g
- © Consider a new clock, with p hours on the dial and needle moving q hours at a time
- The original clock can be obtained by sub-dividing each hour in the new clock into g hours
- New clock: needle reaches all p hours {0,1,...,p-1}
  ⇒ Original clock: it reaches p hours, {0,g,...g(p-1)}

Has m hours on its dial, needle moves n hours at a time

Will the needle reach all the hours?

Iff qcd(m,n) = 1

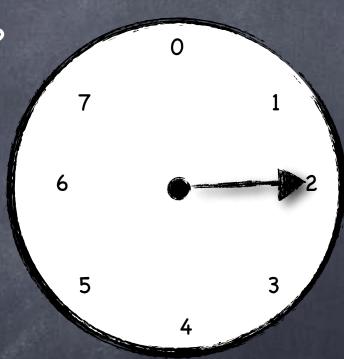
m-1 steps

Then how long will it take to reach all the hours?

m/gcd(m,n) are reached?

If gcd(m,n)≠1, how many hours

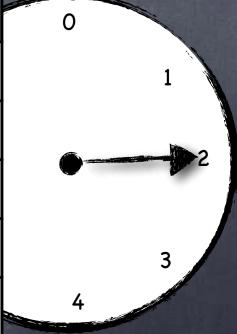
What is the first hour that gets repeated?



## Repeating

Has m hours on its dial, needle moves n hours at a time

| × | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 0 |
| 2 | 0 | 2 | 4 | 6 | 0 | 2 | 4 | 6 | 0 |
| 3 | 0 | 3 | 6 | 1 | 4 | 7 | 2 | 5 | 0 |
| 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 |
| 5 | 0 | 5 | 2 | 7 | 4 | 1 | 6 | 3 | 0 |
| 6 | 0 | 6 | 4 | 2 | 0 | 6 | 4 | 2 | 0 |
| 7 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |



m=8

Has m hours on its dial, needle moves n hours at a time

Will the needle reach all the hours?

Iff qcd(m,n) = 1

m-1 steps

Then how long will it take to reach all the hours?

 If gcd(m,n)≠1, how many hours m/gcd(m,n) are reached?

What is the first hour that gets repeated?

