Numb3rs

The Chinese Remainder Theorem

Chiming Clocks

11

10

9

Two clocks, with a hours and b hours on their dials

- Say they both start at 0, and move one step every minute
 - e.g., a=13, b=9. After 3 minutes, both point to 3. After 10 minutes, the first clock points to 10, and the second to 1.
- Each clock has a position where it chimes, say r and s, respectively
 - e.g., r=11 and s=5

Question: Will the two clocks ever chime together?

An Example

Say, a=3 and b=5

Note that after lcm(a,b) = 15 steps, both clocks will be back to 0

- So enough to check the first 15 steps
- Let's find out <u>all pairs</u> (r,s) that the two clocks will simultaneously reach
 - All 15 possible pairs occur, once each!

time	Clock 1	Clock 2
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

As Modular Arithmetic

• Consider mapping elements in \mathbb{Z}_{15} (all 15 of them) to \mathbb{Z}_3 and \mathbb{Z}_5 $x \mapsto (x \mod 3, x \mod 5)$ All 15 possible pairs occur, once each • That is, for each $(r,s) \in \mathbb{Z}_3 \times \mathbb{Z}_5$, there is exactly one x such that $x = r \pmod{3}$ and $x = s \pmod{5}$ For which a,b are we guaranteed that there is a solution for this system (no matter what

r,s is)?

\mathbb{Z}_{15}	\mathbb{Z}_3	\mathbb{Z}_5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

If gcd(a,b) = 1, then for all (r,s) there is a unique solution (modulo ab) to the system x = r (mod a) and x = s (mod b)

Any $(r,s) \in \mathbb{Z} \times \mathbb{Z}$ has exactly the same solutions as the pair (rem(r,a), rem(s,b)) has

So, w.l.o.g, $r \in [0,a)$ and $s \in [0,b)$

\mathbb{Z}_{15}	\mathbb{Z}_3	\mathbb{Z}_5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

If gcd(a,b) = 1, then for all (r,s) there is a unique solution (modulo ab) to the system x = r (mod a) and x = s (mod b)

Proof of existence:

- Take snapshots of the b-clock every time the needle of the a-clock reaches 0.
- The snapshots correspond to the needle of the b-clock moving a hours at a time
- Since gcd(a,b)=1, all positions in the bclock will be reached in the snapshots

- Ø i.e., for all s, (0,s) has a solution
- For any (r,s), let s'=s-r (mod b). Let x be a solution for (0,s'). x+r is one for (r,s).

\mathbb{Z}_{15}	\mathbb{Z}_3	\mathbb{Z}_5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

If gcd(a,b) = 1, then for all (r,s) there is a unique solution (modulo ab) to the system x = r (mod a) and x = s (mod b)

Proof of existence:

Will solve for (r,s)=(1,0) and for (r,s)=(0,1)
i.e., α = 1 (mod a), α = 0 (mod b), β = 0 (mod a), β = 1 (mod b),
Then, can let x = αr+βs.
I u,v au+bv=1 (can compute using EEA)
Let α = 1-au = bv and β = 1-bv = au

\mathbb{Z}_{15}	\mathbb{Z}_3	\mathbb{Z}_5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

If gcd(a,b) = 1, then for all (r,s) there is a unique solution (modulo ab) to the system x = r (mod a) and x = s (mod b)

- Existence: x = bvr + aus, where au+bv=1
- Oliqueness:
 - Recall, r∈[0,a) and s∈[0,b)
 - There are ab such pairs (r,s). Every pair (r,s) has <u>at least</u> one solution.
 - There are only ab values of x (mod ab).
 Each x is a solution for (at most) one (r,s).
 - Hence, no pair (r,s) has two solutions

\mathbb{Z}_{15}	\mathbb{Z}_3	\mathbb{Z}_5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	-1	0
11	2	1
12	0	2
13	1	3
14	2	4

If gcd(a,b) = 1, then for all (r,s) there is a unique solution (modulo ab) to the system x = r (mod a) and x = s (mod b)

Existence: x = bvr + aus, where au+bv=1

• Uniqueness: $|\mathbb{Z}_{ab}| = |\mathbb{Z}_{a}| \cdot |\mathbb{Z}_{b}|$

CRT Representation:

O Represent x ∈ \mathbb{Z}_{ab} as the pair
 (r,s) = (rem(x,a), rem(x,b)) ∈ $\mathbb{Z}_a \times \mathbb{Z}_b$

Can go from (r,s) to x uniquely, using EEA

A DECK OF THE OWNER	A State of the Party of the Par	
\mathbb{Z}_{15}	\mathbb{Z}_3	\mathbb{Z}_5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

m = ab, where gcd(a,b) = 1

Arithmetic Using CRT

- Suppose m = ab, where gcd(a,b) = 1
- Can use CRT representation to do arithmetic in \mathbb{Z}_m using arithmetic in \mathbb{Z}_a and \mathbb{Z}_b
- CRT representation of \mathbb{Z}_m : every element of \mathbb{Z}_m can be written as a unique element of $\mathbb{Z}_a \times \mathbb{Z}_b$
- Addition and multiplication can be done coordinate-wise in CRT representation
 - If rem(x,a)=r and rem(x',a)=r', then rem(x+x',a) = r + r' (mod a). Similarly, mod b.

$$(r, s) +_{(m)} (r', s') = (r +_{(a)} r', s +_{(b)} s')$$

Similarly,

 $(r, s) \times_{(m)} (r', s') = (r \times_{(a)} r', s \times_{(b)} s')$

\mathbb{Z}_{15}	\mathbb{Z}_3	\mathbb{Z}_5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

m = ab, where gcd(a,b) = 1

CRT and Inverses

- Addition and multiplication can be done coordinate-wise in CRT representation
 - Additive identity is (0,0) and multiplicative identity is (1,1)
- Additive and multiplicative inverses are coordinate-wise too
 - $(r,s) +_{(m)} (r',s') = (0,0) \longleftrightarrow r+_{(a)}r'= 0, s+_{(b)}s'= 0$
 - $(r,s) \times_{(m)} (r',s') = (1,1) \longleftrightarrow r \times_{(a)} r' = 1, s \times_{(b)} s' = 1$

\mathbb{Z}_{15}	\mathbb{Z}_3	\mathbb{Z}_5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

m = ab, where gcd(a,b) = 1

CRT and Inverses

- Addition and multiplication can be done coordinate-wise in CRT representation
 - Additive identity is (0,0) and multiplicative identity is (1,1)
- Additive and multiplicative inverses are coordinate-wise too

 - $(r,s) \times_{(m)} (r',s') = (1,1) \leftrightarrow r \times_{(a)} r' = 1, s \times_{(b)} s' = 1$
 - ✓ x has multiplicative inverse modulo m iff it has multiplicative inverses modulo a and b
 ✓ gcd(x,m)=1 ↔ gcd(x,a)=1 and gcd(x,b)=1

\mathbb{Z}_{15}	\mathbb{Z}_3	\mathbb{Z}_5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

CRT Beyond 2 Factors

Suppose $m = a_1 \cdot a_2 \cdot ... \cdot a_n$, where $gcd(a_i, a_j)=1$ for all $i \neq j$. For any $(r_1, ..., r_n)$, $r_i \in [0, a_i)$, there is a unique solution in [0, m) for the system of congruences $x \equiv r_i \pmod{a_i}$ for i=1, ..., n

Proof of existence, by (weak) induction: < Uniqueness as before:</p>

Ø Base case: n=1 ✓

Uniqueness as before: $|\mathbb{Z}_{m}| = |\mathbb{Z}_{a_{1}} \times ... \times \mathbb{Z}_{a_{n}}|$

- Induction step: We shall prove that for all k ≥ 1, (induction hypothesis) if every system of k congruences with co-prime moduli has a solution, (to prove) then so does every such system of k+1 congruences
 - Given (a₁,...,a_{k+1},r₁,...,r_{k+1}), define a system for (a₁,...,a_k,r₁,...,r_k), get a solution, say s. Define a system of 2 congruences, with co-prime moduli a= a₁ · ... · a_k, and b=a_{k+1},

 $x \equiv s \pmod{a}$ and $x \equiv r_{k+1} \pmod{a_{k+1}}$.

By CRT, this has a solution. This is a solution for the original system (why?). \checkmark Exercise: $x \equiv s \pmod{a} \land a_1 \mid a \Rightarrow x \equiv s \pmod{a_1}$