#### Numb3rs

 $\mathbb{Z}_m^*$  and its Structure: Euler's  $\phi$  and Discrete Log



Such an element is called a unit of Z<sub>m</sub>
e.g., Z<sup>\*</sup><sub>2</sub> = {1}, Z<sup>\*</sup><sub>3</sub> = {1,2}, Z<sup>\*</sup><sub>4</sub> = {1,3}
Recall: a<sup>-1</sup> exists in Z<sub>m</sub> iff gcd(a,m) = 1
Z<sup>\*</sup><sub>m</sub> = { [a]<sub>m</sub> | a ∈ Z, gcd(a,m) = 1 }

| × | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 |
| 2 | 0 | 2 | 0 | 2 |
| 3 | 0 | 3 | 2 | 1 |

• How many units are there in  $\mathbb{Z}_m$ ? Ø When m is prime? m−1 (all except 0) • When  $m = p^2$ , where p is prime? A number has a common factor with p<sup>2</sup> iff it is a multiple of p (i.e.,  $\in \{0, p, 2p, \dots, (p-1)p\}$ ) Ø i.e., p<sup>2</sup> − p units • When  $m = p^k$ , where p is prime?  $p^{k}-p^{k-1} = m(1-1/p)$  units • When  $m = p_1^{d_1} \cdot \dots \cdot p_n^{d_n}$  where  $p_i$  are primes? By CRT, units have the form  $(r_1,...,r_n)$ , 0 where each r<sub>i</sub> is invertible modulo p<sub>i</sub><sup>d<sub>i</sub></sup> 

| Contract of the   | and Charges    | 100 - 514      |
|-------------------|----------------|----------------|
| $\mathbb{Z}_{15}$ | $\mathbb{Z}_3$ | $\mathbb{Z}_5$ |
| 0                 | 0              | 0              |
| 1                 | 1              | 1              |
| 2                 | 2              | 2              |
| 3                 | 0              | 3              |
| 4                 | 1              | 4              |
| 5                 | 2              | 0              |
| 6                 | 0              | 1              |
| 7                 | 1              | 2              |
| 8                 | 2              | 3              |
| 9                 | 0              | 4              |
| 10                | 1              | 0              |
| 11                | 2              | 1              |
| 12                | 0              | 2              |
| 13                | 1              | 3              |
| 14                | 2              | 4              |

#### Euler's Totient Function

 $\odot$  How many units are there in  $\mathbb{Z}_m$ ?

•  $\phi(m) = m(1-1/p_1) \cdot ... \cdot (1-1/p_n)$  where  $p_1,...,p_n$  are the prime factors of m

 $\odot$  i.e.,  $|\mathbb{Z}_m^*| = \phi(m)$ 

So Euler's  $\phi$  function (a.k.a. Euler's totient function) So e.g.  $\phi(2) = 1$ ,  $\phi(3) = 2$ ,  $\phi(4) = 4(1-1/2) = 2$ 

• Exercise: If gcd(a,b) = 1, then  $\varphi(ab) = \varphi(a) \cdot \varphi(b)$ 

Such a function is called a <u>multiplicative function</u>

 $\mathbb{Z}_{\mathsf{m}}^{*}$ 

| 3 | Exam | oles                                        |
|---|------|---------------------------------------------|
|   | @ m= | 6                                           |
|   | 3    | $\phi(6) = (2-1)(3-1) = 2$                  |
|   | 3    | <b>Z</b> <sup>*</sup> <sub>6</sub> = {1, 5} |
|   | Ø m= | 10                                          |
|   | 3    | $\phi(10) = (2-1)(5-1) = 4$                 |
|   | 0    | $\mathbb{Z}_{10}^* = \{1, 3, 7, 9\}$        |

6

|             |   |   |   |   | a contract | - |   |
|-------------|---|---|---|---|------------|---|---|
|             | × | 0 | 2 | 3 | 4          | 5 | 1 |
|             | 0 | 0 | 0 | 0 | 0          | 0 | 0 |
| Double line | 2 | 0 | 4 | 0 | 2          | 4 | 2 |
|             | 3 | 0 | 0 | 3 | 0          | 3 | 3 |
| ļ           | 4 | 0 | 2 | 0 | 4          | 2 | 4 |
| 1000        | 5 | 0 | 4 | 3 | 2          | 1 | 5 |
|             | 1 | 0 | 2 | 3 | 4          | 5 | 1 |

|   | × | 0 | 2 | 4 | 6 | 8 | 5 | 1 | 3 | 7 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|---|
|   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|   | 2 | 0 | 4 | 8 | 2 | 6 | 0 | 2 | 6 | 4 | 8 |
|   | 4 | 0 | 8 | 6 | 4 | 2 | 0 | 4 | 2 | 8 | 6 |
| 2 | 6 | 0 | 2 | 4 | 6 | 8 | 0 | 6 | 8 | 2 | 4 |
|   | 8 | 0 | 6 | 2 | 8 | 4 | 0 | 8 | 4 | 6 | 2 |
|   | 5 | 0 | 0 | 0 | 0 | 0 | 5 | 5 | 5 | 5 | 5 |
|   | 1 | 0 | 2 | 4 | 6 | 8 | 5 | 1 | 3 | 7 | 9 |
|   | 3 | 0 | 6 | 2 | 8 | 4 | 5 | 3 | 9 | 1 | 7 |
|   | 7 | 0 | 4 | 8 | 2 | 6 | 5 | 7 | 1 | 9 | 3 |
|   | 9 | 0 | 8 | 6 | 4 | 2 | 5 | 9 | 7 | 3 | 1 |



If a∈ℤ<sub>m</sub> ∧ ℤ<sub>m</sub><sup>\*</sup> then, in ℤ<sub>m</sub>, ∃u≠0 s.t. au=0
a not unit ⇒ gcd(a,m)>1
in ℤ, u = m/gcd(a,m), 0 < u < m</li>
in ℤ<sub>m</sub>, ∃u≠0 s.t. au = 0
Converse also holds: If a∈ℤ<sub>m</sub><sup>\*</sup> then, in ℤ<sub>m</sub>, ∀u≠0, au≠0

Suppose ∃a∈ $\mathbb{Z}_m^*$  and ∃u≠0 s.t. au=0.
Then u = a<sup>-1</sup>au = 0 !

 $a, b \in \mathbb{Z}_m^* \rightarrow ab \in \mathbb{Z}_m^*, \ because \ (ab)(b^{-1}a^{-1}) = 1$ 

| × | 0 | 2 | 3 | 4 | 5 | 1 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 4 | 0 | 2 | 4 | 2 |
| 3 | 0 | 0 | 3 | 0 | 3 | 3 |
| 4 | 0 | 2 | 0 | 4 | 2 | 4 |
| 5 | 0 | 4 | 3 | 2 | 1 | 5 |
| 1 | 0 | 2 | 3 | 4 | 5 | 1 |

 $\mathbb{Z}_{\mathsf{m}}^{*}$ 

×

|                                                                                                                   |                 |     |    |   |   |        |          | 0        | 0        |  |
|-------------------------------------------------------------------------------------------------------------------|-----------------|-----|----|---|---|--------|----------|----------|----------|--|
| ${\mathfrak o}$ a $\in {\mathbb Z}_{\mathsf m}^* 	o$ a-1 $\in {\mathbb Z}_{\mathsf m}^*$                          |                 |     |    |   |   |        | 4        | 0        | 2        |  |
|                                                                                                                   |                 |     |    |   | 3 | 0      | 0        | 3        | 0        |  |
|                                                                                                                   | <sup>1</sup> a- | 1)  | =  | ] | 4 | 0      | 2        | 0        | 4        |  |
|                                                                                                                   |                 |     |    |   | 5 | 0      | 4        | 3        | 2        |  |
| Ø For each a ∈ $\mathbb{Z}_m^*$ , a · $\mathbb{Z}_m^*$ ≤ { ab   b ∈ $\mathbb{Z}_n^*$                              | ; <b>}</b> :    | = 7 | -m |   | 1 | 0      | 2        | 3        | 4        |  |
| We have $a \cdot \mathbb{Z}_m^* \subseteq \mathbb{Z}_m^*$                                                         |                 | 0   | 2  | 4 | 6 | 8      | 5        | 1        | 3        |  |
|                                                                                                                   | ^<br>0          | 0   | 0  | 4 | 0 | 。<br>0 | 0        | 0        |          |  |
| since $a,b \in \mathbb{Z}_m^* \rightarrow ab \in \mathbb{Z}_m^*$ ,                                                | 2               | 0   | 4  | 8 | 2 |        | <u> </u> | <u> </u> | <b>—</b> |  |
| Similarly, a <sup>-1</sup> ·Z <sup>*</sup> <sub>m</sub> ⊆ Z <sup>*</sup> <sub>m</sub>                             | 4               | 0   | 8  | 6 | 4 | 2      | 0        | 4        | 2        |  |
| $\varnothing$ $\Rightarrow$ $\forall$ x $\in$ $\mathbb{Z}_{m}^{*}$ , a $^{-1} \cdot$ x $\in$ $\mathbb{Z}_{m}^{*}$ |                 | 0   | 2  | 4 | 6 | 8      | 0        | 6        | 8        |  |
|                                                                                                                   | 8               | 0   | 6  | 2 | 8 | 4      | 0        | 8        | 4        |  |
| $\Rightarrow$ $\forall x \in \mathbb{Z}_m^*$ , $x \in \mathfrak{a} \cdot \mathbb{Z}_m^*$                          | 5               | 0   | 0  | 0 | 0 | 0      | 5        | 5        | 5        |  |
|                                                                                                                   | 1               | 0   | 2  | 4 | 6 | 8      | 5        | 1        | 3        |  |
| $\Rightarrow \mathbb{Z}_m^* \subseteq \mathfrak{a} \cdot \mathbb{Z}_m^*$                                          | 3               | 0   | 6  | 2 | 8 | 4      | 5        | 3        | 9        |  |
| $\odot$ So $\mathbf{a} \cdot \mathbb{Z}_{m}^{*} = \mathbb{Z}_{m}^{*}$                                             | 7               | 0   | 4  | 8 | 2 | 6      | 5        | 7        | 1        |  |
| $\mathbf{U} = \mathbf{U}_{\mathbf{m}} = \mathbf{U}_{\mathbf{m}}$                                                  | 9               | 0   | 8  | 6 | 4 | 2      | 5        | 9        | 7        |  |

#### Modular Exponentiation

 $\odot$  Exponentiation in  $\mathbb{Z}_m$  defined using repeated multiplication

O For a ∈  $\mathbb{Z}_m$  and d ∈  $\mathbb{Z}^+$ , define  $a^d \triangleq a \times_{(m)} ... \times_{(m)} a$ 

Important: The exponent is <u>not</u> modulo m

d times

Recursive definition:  $a^1 = a$ , and  $\forall d > 1$ ,  $a^d = a \times_{(m)} a^{d-1}$ 

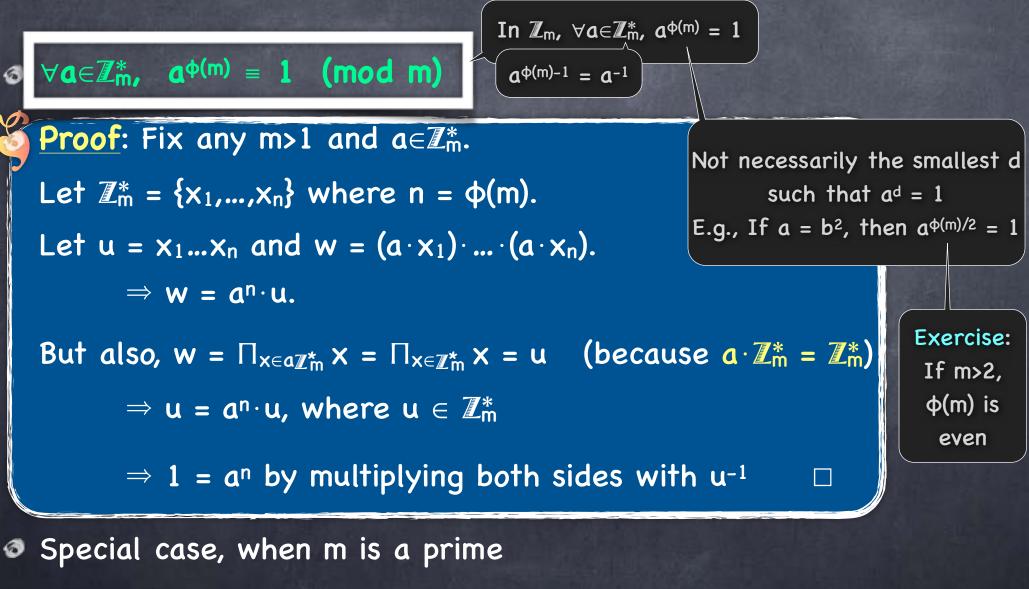
Alternately, for a ∈  $\mathbb{Z}$ , define ( [a]<sub>m</sub> ) <sup>d</sup>  $\triangleq$  [a<sup>d</sup>]<sub>m</sub>

 $\odot$  In  $\mathbb{Z}_m^*$ , can extend the definition to  $d \in \mathbb{Z}$ 

 $a^{0}=1$  and  $a^{-d} = (a^{-1})^{d}$ 

Note: a<sup>e</sup>a<sup>d</sup> = a<sup>e+d</sup> and (a<sup>e</sup>)<sup>d</sup> = a<sup>ed</sup> where operations in the exponent are in I

# Euler's Totient Theorem



Fermat's Little Theorem:
For prime p and a not a multiple of p,  $a^{p-1} \equiv 1 \pmod{p}$ 

# Cyclic Structure of $\mathbb{Z}_p^*$

- The multiplicative clock!
  - Clock's hand starts at 1 (not 0) and <u>multiplies</u> the current position by some g≠0 to get to the next one
  - $\bigcirc$  1, g, g<sup>2</sup>, ..., g<sup>p-2</sup>, g<sup>p-1</sup>=1
    - If g=1, it never moves
    - If g=-1, it keeps switching positions between 1 and -1
    - It never reaches 0
  - A g which will make the hand go everywhere (except 0)?

**Important Fact (won't prove):** If p is a prime, then there is a g s.t. every element in  $\mathbb{Z}_p^*$  is of the form  $g^k$ 

e.g., p=5, g=2: 1, 2, 4, 3. p=7, g=3: 1, 3, 2, 6, 4, 5.

True for some other values also

# Cyclic Structure of $\mathbb{Z}_p^*$

Important Fact (won't prove): If p prime, then  $\exists g \in \mathbb{Z}_p^* \quad \forall x \in \mathbb{Z}_p^* \quad \exists k \in [0, p-1) \quad x = g^k$ 

• Such a g is called a "generator of  $\mathbb{Z}_p^{*''}$ There is a  $\mathbb{Z}_{p-1}$  hiding in  $\mathbb{Z}_p^*!$ a.k.a. a primitive root of p • Can order the numbers in  $\mathbb{Z}_p^*$  as 1,g,g<sup>2</sup>,.. (for some g) 𝔄  $g^k \in \mathbb{Z}_p^*$  is labelled by  $k \in \mathbb{Z}_{p-1}$  in this ordering. Then, multiplication in  $\mathbb{Z}_p^*$  becomes addition of the labels in  $\mathbb{Z}_{p-1}!$ Discrete Log: Given x and a generator g of  $\mathbb{Z}_p^*$ ,  $\exists k$  s.t.  $g^k = x$ . not easy to go backwards < A candidate for a "one-way function"