Numb3rs

Modular Exponentiation

Story So Far

- © Quotient and Remainder, GCD, Euclid's algorithm, $L(a,b) \triangleq \{au + bv \mid u,v \in \mathbb{Z}\} = \{n \cdot gcd(a,b) \mid n \in \mathbb{Z}\}$
- Primes, Fundamental Theorem of Arithmetic
- \bigcirc Modular Arithmetic (\mathbb{Z}_m) : Addition, Multiplication
- **Chinese Remainder Theorem**: for $m = a_1 \cdot ... \cdot a_n$ where a_i 's coprime
 - © CRT representation in \mathbb{Z}_m : x → (r₁,...,r_n) where r_i = rem(x,a_i)
 - $(r_1,...,r_n) \mapsto x \text{ s.t. } \forall i, x = r_i \pmod{a_i} \pmod{a_i}$
 - @ Can tell time in a big clock from time in n small clocks
- \bullet Multiplicative Inverse and \mathbb{Z}_{m}^{*} :

 - \bullet \mathbb{Z}_m^* closed under multiplication and inversion
- Euler's Totient function $|\mathbb{Z}_m^*| = \phi(m) = m(1-1/p_1)...(1-1/p_n)$, where $a_i = p_i^{d_i}$
 - **⊗** Euler's Totient theorem: $\forall x \in \mathbb{Z}_m^*$, $x^{\phi(m)} = 1$
- Generators of \mathbb{Z}_p^* for prime p: \mathbb{Z}_p^* = {1,g,g²,...,g^{p-2}}

Modular Exponentiation Reconstitution

- Exponentiation in \mathbb{Z}_m defined using repeated multiplication
 - For a ∈ \mathbb{Z}_m and d ∈ \mathbb{Z}^+ , define $a^d \triangleq a \times_{(m)} ... \times_{(m)} a$

Important: The exponent is not modulo m

- Recursive definition: $a^1 = a$, and $\forall d > 1$, $a^d = a \times_{(m)} a^{d-1}$
- **⊘** Alternately, for $a \in \mathbb{Z}$, define ([a]_m) d \(= [ad]_m
- \circ In \mathbb{Z}_m^* , can extend the definition to $d \in \mathbb{Z}$
 - $a^0 = 1$ and $a^{-d} = (a^{-1})^{d}$
- Note: $a^e a^d = a^{e+d}$ and $(a^e)^d = a^{ed}$ where operations in the exponent are in \mathbb{Z}

- - $a^{\phi(m)} = 1 \Rightarrow \text{if } \phi(m)|x$, then $a^x = (a^{\phi(m)})^q = 1$ (where $x = \phi(m)q$, $q \in \mathbb{Z}$) $\Rightarrow \text{if } \phi(m) \mid c d \text{, then } a^{c d} = 1$ $\Rightarrow \text{if } c = d \text{ (mod } \phi(m)), \text{ then } a^c = a^d$
- \bullet i.e., in \mathbb{Z}_m^* , a^d can be defined for $a \in \mathbb{Z}_m^*$ and $d \in \mathbb{Z}_{\varphi(m)}$
- Finding the eth-root: given xe find x
 - Tind d s.t. ed = 1 (mod $\phi(m)$). Then, $(x^e)^d = x$.
 - Only if $gcd(e, \phi(m)) = 1$

 $a^{1/e}$ is a value b s.t. $b^e = a$. May or may not exist/be unique

- \circ 9¹⁰ in \mathbb{Z}_{13}^* ?

 - **3** 10 = −2 in \mathbb{Z}_{12} ⇒ x^{10} = x^{-2} = $(x^{-1})^2$ in \mathbb{Z}_{13}^*
 - Now, in \mathbb{Z}_{13}^* , $9^{-1} = ? 9 \cdot 3 + 13 \cdot (-2) = 1$
 - $9^{-1} = 3 \Rightarrow 9^{10} = 9^{-2} = 3^2 = 9 \text{ in } \overline{\mathbb{Z}_{13}^*}$
- Note: $3^3 = 1$ in \mathbb{Z}_{13}^* . In fact $x^3 = 1$ for $x \in \{1,3,9\}$. So, $x^{1/3}$ not well-defined in \mathbb{Z}_{13}^* .
- - \circ gcd(5,12) = 1. So uniquely determined.

- Suppose m = pq, with gcd(p,q)=1 and a → (x,y) by CRT

 - The second of t
 - \circ Similarly when x=0, $y \in \mathbb{Z}_q^*$.
 - When p,q prime these (and a=0) cover all the cases
- \odot If m is a product of distinct primes, then $\forall a \in \mathbb{Z}_m$:
 - $a^{k \cdot \phi(m)+1} = a$
 - If gcd(e,φ(m)) = 1, ∃d s.t. a^{ed} = a (d=e⁻¹ in $\mathbb{Z}_{φ(m)}$)

- \circ 15^{1/3} in \mathbb{Z}_{33} ?
 - \odot Is there a 1/3 in $\mathbb{Z}_{\phi(33)}$?
 - \bullet Yes: $\phi(33) = \phi(3) \cdot \phi(11) = 20$. gcd(3,20) = 1
 - From the Extended Euclidean Algorithm: 3.7 + 20.(-1) = 1
 - \circ 3⁻¹ = 7 in \mathbb{Z}_{20}^*
 - **3** 15 \notin \mathbb{Z}_{33}^* but 3,11 prime \Rightarrow 15^{1/3} = 15⁷
 - By repeated squaring:

 - $0 15^7 = 15^4 \cdot 15^2 \cdot 15$ $= 3 \cdot 27 \cdot 15 = 27$

$$\odot$$
 By CRT: $\mathbb{Z}_{33} \cong \mathbb{Z}_3 \times \mathbb{Z}_{11}$

$$\circ$$
 15⁷ = 27

In
$$\mathbb{Z}_{11}^*$$
 $(4^7 = 4^{-3} = 3^3 = 5)$

- \circ 15^{1/2} in \mathbb{Z}_{33} ?
 - \odot Is there a 1/2 in $\mathbb{Z}_{\phi(33)}$?
 - No! $gcd(2,\phi(33)) = 2$
 - \odot But $9^2 = [81]_{33} = 15$

$$\bullet$$
 By CRT: $\mathbb{Z}_{33} \cong \mathbb{Z}_3 \times \mathbb{Z}_{11}$

$$0 15^{1/2} \rightarrow (0,4^{1/2}) = (0,\pm 2)$$

Squares and Square-Roots

- \odot Squaring is not an invertible operation in \mathbb{Z}_m , for m>2

 - $a^2 = (-a)^2$
 - Every element has one square, but many elements have at least two square roots
- Quadratic Residues: Elements in Z^{*}_m of the form x²

Squares in \mathbb{Z}_p^*

- Quadratic Residues in Z_p*, for prime p: "even powers" 1, g², g⁴, ..., g^{p-3}
- \odot Exactly half of \mathbb{Z}_p^* are quadratic residues (p>2)
 - Will call them ℚℝ^{*}_p

- Bad idea: Compute discrete log (w.r.t. some generator g) and check if it is even
- Good idea: Just check if $z^{(p-1)/2} = 1$.

 If $z = g^{2k}$, $z^{(p-1)/2} = g^{k(p-1)} = 1$.

 If $z = g^{2k+1}$, $z^{(p-1)/2} = g^{k(p-1) + (p-1)/2} = g^{(p-1)/2} ≠ 1$ (why?)

Square-roots in \mathbb{Z}_p^*

- What are all the square-roots of x^2 in \mathbb{Z}_p^* ?
- Let's find all the square roots of 1

$$x^2=1 \Leftrightarrow (x+1)(x-1) = 0 \Leftrightarrow (x+1)=0 \text{ or } (x-1)=0 \text{ (why?)}$$

 $x=1 \text{ or } x=-1$

- $0 \sqrt{1} = \pm 1$
- $g^{(p-1)/2} = -1$, because $(g^{(p-1)/2})^2 = 1$ and $g^{(p-1)/2} \neq 1$
- More generally $√(a^2) = \pm a$ (i.e., only a and -1·a)

In \mathbb{Z}_p^* , $1^{1/e}$ has exactly gcd(e,p-1) values (Exercise)

In \mathbb{Z}_p^* , $(a^e)^{1/e}$ has exactly gcd(e,p-1) values (Exercise)

Square-roots in QRp

- \bullet How many square-roots stay in \mathbb{QR}_p^* ?
 - Depends on p!
 - o e.g. $QR_{13}^* = \{\pm 1, \pm 3, \pm 4\}$
 - 1,3,-4 have 2 square-roots each. But -1,-3,4 have none within \mathbb{QR}_{13}^*
 - $oldsymbol{\circ}$ Since $-1\in\mathbb{QR}^*_{13}$, $\mathsf{x}\in\mathbb{QR}^*_{13}\Rightarrow -\mathsf{x}\in\mathbb{QR}^*_{13}$
- If (p-1)/2 odd, exactly one of ±x in ℚℝ^{*}_p (for all x)
 - \odot Then, squaring is a permutation in \mathbb{QR}_p^*

Square-roots in QRp

$$In \mathbb{Z}_p^* \sqrt{(x^2)} = \pm x$$

- Easy to compute both ways
 - In fact $√z = z^{(p+1)/4} ∈ ℚℝ_p[*] (because (p+1)/2 even)$

Modular Exponentiation Summary

- - \bullet In \mathbb{Z}_m^* , a^d can be defined for $a \in \mathbb{Z}_m^*$ and $d \in \mathbb{Z}_{\varphi(m)}$
 - o In \mathbb{Z}_m^* if gcd(e,φ(m)) = 1, ∃d s.t. $a^{1/e} = a^d$ (d=e⁻¹ in $\mathbb{Z}_{\varphi(m)}^*$)
- ⊗ ∀a ∈ ℤ_m, a^{φ(m)+1} = a, provided m is a product of distinct primes
 - But a^{\phi(m)} need not be 1
 - o In $\mathbb{Z}_{m_{\bullet}}$ if gcd(e,φ(m)) = 1, ∃d s.t. $a^{1/e} = a^{d}$ (d=e⁻¹ in $\mathbb{Z}_{\varphi(m)}^{*}$)