Numb3rs

Modular Exponentiation




Story So Far

@ Quotient and Remainder, GCD, Euclids algorithm,
L(a,b) 2 {au+bv|uveZ}={ngcdlab)lnecz}

@ Primes, Fundamental Theorem of Arithmetic
@ Modular Arithmetic (Z.) : Addition, Multiplication

@ Chinese Remainder Theorem : for m = a;-...-a» Where ais coprime g

@ CRT representation in Zn, : x » (ri,..,rn) where ri = rem(x,a;)
@ (ry,...,mn) » x s.t. Vi, x = ri (mod a;) (computable using EEA)
@ Can tell time in a big clock from time in n small clocks
@ Mul’riplica’rive Inverse and 7 :

@ ac’Zf : ged(a,m)=1 « 3Ju,v au+tmv=1l < 3Ju [a]n Xm [Uln = [1]n
@ 41, closed under multiplication and inversion

@ Euler’s Totient function : |Z&l = $(m) = m(1-1/p1)...(1-1/ps), where ai=pid

@ Eulers Totient theorem: vxeZi, x®m = 1

@ Generators of Z} for prime p : = {1,9,92,...,.gP-%}




Modular Exponentiatici

@ Exponentiation in Z,, defined using repeated multiplication

@ For a € Zn and d € Z+,define ad 2 a xq) ... xm @

)
Elmpor’ran’r: The exponen’r} \,

is not modulo m d times

@ Recursive defnition: a! = a, and vd > 1, a4 = a x( ad-!

@ Alternately, for a € Z, define ( [a]n )¢ 2 [ad]n
@ In 7}, can extend the definition tod € #Z

@ a%=1 and a4 = (a-1)d

@ Note: aead = a°+d and (a¢)d = aed where operations in the exponent
are in Z T it} B Ty }




Modular Exponentiation
Using Eulers Totient Function

@ vaeki, if ¢ = d (mod ¢(m)) then ac = ad
@ a®m = 1 = if p(m)lx, then ax = (a®™)a = 1 (where x=¢p(m)q, qcZ)

= if $(m) | c-d, then acd = 1
= if ¢ = d (mod $(m)), then ac = ad

@ i.e., in Z}, ad can be defined for acZ;, and deZgm)

@ Finding the eth-root: given xe find x
P I
@ Find d s.t. ed = 1 (mod $(m)). Then, (xe)d = X. | ai%is a value b s.t.

be = a. M
@ Only if gcd(e, p(m)) = 1 el Al

not exist/be unique
\_ /




Modular Exponentiation
Using Eulers Totient Function

@ 910 in ZiT3?

@ 10 =-2in Z;; = x10 = x-2 = (x-1)2 in Z}5

@ Now, in Zi3, 9-1 =2 9:3 + 13+(-2) =1
®91=3=910=92=32=9 inZ};
@ Note: 33 = 1 in Z%3. In fact x3 =1 for x € {1,3,9}.
So, X1/3 not well-defined in Z7s.
@ x5 in 473 ?

@ gcd(5,12) = 1. So uniquely determined.
@ 5-1=5in 4}, = x1/5 = x5 in Zi;



Modular Exponentiation
Using Eulers Totient Function

@ Suppose m = pq, with ged(p,q)=1 and a » (x,y) by CRT
@ If x € 43, y € 43, then a®M = g¢(P)¢q) - (x¢(P)¢q), yd(p)-4a)) = (1,1)
@ a%m = 1 and a%Mm+! = g
@ If x € Z3, y = 0, then a%m = g¢(p)¢@) » (x¢()-9@), 0) = (1,0)
@ a%®m £ 1 but gdm+l = q
@ Similarly when x=0, y € Zg.
@ When p,q prime these (and a=0) cover all the cases
@ If m is a product of distinct primes, then vae4y:
@ akdem+l = g

@ If gcd(e,d(m)) = 1, 3d s.t. aed = a (d=e-! in Zy(m))



Modular Exponentiation
Using Eulers Totient Function
@ 15183 in 7337
@ Is there a 1/3 in Zg(33)?

@ Yes: $(33) = $(3)-p(11) = 20. gcd(3,20) = 1
@ From the Extended Euclidean Algorithm: 3-7 + 20-(-1) = 1
@ 3-1=7In E?o

@ 15 ¢ Z33 but 3,11 prime = 151/3 = 157
@ By repeated squaring:

@ 152 = 27 @ 15 » (0,4)
@ 154 = 272 = (-6)2 = 3 @ 157 » (0,47) = (0,5)

® 157 = 154 15215 § o157 =27 | ..
= 3-27-15 = 27 | c

% By CRT: A3z = A3 X 44,

/R = (A5 =5 5P &




Modular Exponentiation
Using Eulers Totient Function

@ 1512 in 43572 % @ By CRT: 433 = 73 x 4,

@ Is there a 1/2 in Zg33)?
@ No! gcd(2,9(33)) = 2
@ But 92 = [81]33 =.F5

@ 15+ (0,4)
@ 1512 » (0,4172) = (0,12)
@ 1512 = 24 or 9



Squares and Square-Roots

@ Squaring is not an invertible operation in Zn, for m>2
@ gcd(2,p(m)) = 2 for all m>2 [Why?]
@ a2 = (-a)?

@ Every element has one square, but many elements have at least
two square roots

@ = Many elements do not have any square roots!

@ Quadratic Residues: Elements in Zf, of the form x2




Squares in 4,

® Quadratic Residues in Z§, for prime p:
“even powers” 1, g2, g4, ..., gpr-3

@ Exactly half of Z§ are quadratic residues (p>2)

@ Will call them QRR;

@ Given (z,p) can we “efficiently” check if zcQR} ?

@ Bad idea: Compute discrete log (w.r.t. some generator g) and
check if it is even

@ Good idea: Just check if z(p-1)2 = .
If z = g2, z(p-1/2 = gktp-1) = 1.
If y ng+l’ Z(p-l)/2 - gk(p-l) + (p-l)/Z - g(p-l)/Z + | (Why?)



Square-roots in 4,

® What are all the square-roots of x2in Z;?

@ Lets find all the square roots of 1
@ x2z1 & (x+1)(x-1) = 0 & (x+1)=0 or (x-1)=0 (why?)

& x=1 or x=-1

@ J1 =+l

@ gp-1/2 = -1, because (gP-1/2)2 = 1 and gP-1)/2 ¢ 1 =

@ More generally +/(a2) = %a (i.e., only a and -1-a ) -

In Z}, 1'% has

exactly gcd(e,p-1)
values (Exercise)

o

In Z}, (a¢)!/e has

exactly gcd(e,p-1)
values (Exercise)




Square-roots in QR;

o In Zy J(x2) = +x
® How many square-roots stay in QR;?

@ Depends on p!
@ e.g. QRT3 = {+1,+3,+4}

@ 1,3,-4 have 2 square-roots each. But -1,-3,4
have none within QRj;

@ Since -1 € QRT3 x € QRT; = -x € QR7;

@ -1 € QR; iff (p-1)/2 even

@ If (p-1)/2 odd, exactly one of tx in QR (for all x)

@ Then, squaring is a permutation in QR;



Square-roots in QR;

@ In Z7 J(x?) = £x

@ If (p-1)/2 odd, squaring is a permutation in QR;

@ Easy to compute both ways

@ In fact J/z = zk+1)/4 ¢ QR} (because (p+1)/2 even)



Modular Exponentiation

Summary

@ Vva € 4, ad®m =1

@ In Z7, ad can be defined for acZf, and deZ¢(m)

@ In Z3, if gcd(e,p(m)) = 1, 3d s.t. al’e = ad  (d=e-! in Zym)

@ va € 4y, a®m+l = q, provided m is a product of distinct primes

@ But a¢(m need not be 1
@ In 4y, if gcd(e,d(m)) = 1, 3d s.t. alZe = ad (d=e-! in Zpm)

@ Va € Z;, J(a2) = ta, provided p is a prime

@ va € QR}, J(a2) = a, provided p is a prime and (p-1)/2 odd



