Numb3rs

Some Cryptographic Functions

A Word on Efficiency

- Very huge numbers have very short representation
- Take a 256 bit integer, 11...1 = 2²⁵⁶-1
- Can a computer just count up to this number?
 - No. Not even if it runs
 - at the frequency of molecular vibrations (10^{14} Hz)
- for the entire estimated lifetime of the universe (< 10¹⁸ s)
 What if you recruited every atom in the earth (≈10⁵⁰) to do the same?
 - OK, but still will get only to $10^{82} \approx 2^{272}$.
 - And even if you recruited every elementary particle in the known universe (≈10⁸⁰), only up to 10¹¹² ≈ 2³⁷²
- The whole known universe can't count up to a 400-bit number!

A Word on Efficiency

The whole known universe can't count up to a 400-bit number!
 But we can quickly add, multiply, divide and exponentiate much larger numbers. Even find gcd for them!

Roughly, can "compute on" n-bit numbers in n or n² steps

But <u>not</u> if you try an algorithm based on counting through all the numbers! That takes 2ⁿ steps. (e.g., exponentiation using naïve repeated multiplication)

For some problems involving n-bit numbers we don't know algorithms that do much better than 2ⁿ, 2^{n/2} etc.

We believe for some such problems no better algorithms <u>exist</u>!

(Currently, only a belief based on failure to discover better algorithms)

Such hardness forms the basis of much of modern cryptography

Cryptography from \mathbb{Z}_m^*

Trapdoor One-Way Permutation

- Often a building block in "public-key encryption"
- Roughly, it's a <u>bijection</u> (permutation) that is easy to compute but <u>hard to invert</u> (one-way); but while defining the function you can setup a secret (trapdoor) that makes it <u>easy to invert</u> too
- Will see two trapdoor one-way permutation candidates, based on modular exponentiation
 - Rabin's function
 - Rivest-Shamir-Adleman (RSA) function
- Both use a modulus of the form m=pq (p,q large primes)
 - Breaking would be easy if m were prime
 - Also can be broken (using CRT) if factors of m known.

Square-roots in QR^{*}

So If (p−1)/2 odd, squaring is a permutation in QR_p^*

This permutation is easy to compute both ways In fact $\sqrt{z} = z^{(p+1)/4} \in \mathbb{QR}_p^*$ (because (p+1)/2 even) Say $z = x^2 \in \mathbb{QR}_p^*$.

 $(z^{(p+1)/4})^2 = x^{(p+1)} = x^2$

10

Rabin function defined in QR^{*} and relies on keeping the factorisation of m=pq hidden

Rabin Function

Trapdoor One-Way Permutation Candidate

Rabin_m(x) = x² (in QR^{*}_m)

• Is a permutation

- with m=pq (p,q random k-bit primes for, say k=2000)
- If p, q = 3 (mod 4), then in QR_m^* this function

i.e., (p-1)/2 and (q-1)/2 are odd

Has a trapdoor for inverting, namely (p,q)

Ø By CRT: Let x → (a,b). Then \sqrt{x} → (\sqrt{a},\sqrt{b}) = (a^{(p+1)/4}, b^{(q+1)/4})

Conjectured to be a one-way function

RSA Function

Trapdoor One-Way Permutation Candidate

SRSA_{m,e}(x) = x^e (in $ℤ_m$)

• where m=pq (p,q random k-bit primes for, say k=2000) and • gcd(e, $\phi(m)$) = 1 (i.e., $e \in \mathbb{Z}^*_{\phi(m)}$)

A commonly used version (for efficiency) fixes e=3

SAm,e is a permutation with a trapdoor (namely d) ←

In fact, there exists d s.t. RSA_{m,d} is the inverse of RSA_{m,e} -

 \bigcirc d = e^{-1} in $\mathbb{Z}^*_{\phi(m)} \Rightarrow x^{ed} = x in \mathbb{Z}_m$

For x ∈ Z^{*}_m, by Euler's Totient Theorem x^{ed-1} = 1
 For all x ∈ Z_m, by CRT (since m=pq)
 Conjectured to be a one-way function