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Partial Order

A transitive, anti-symmetric and reflexive relation

e.g. ≤ for integers, divides for integers, ⊆ for sets, 
“containment” for line-segments

Equivalently, transitive and acyclic (and ir/reflexive) 
(a pair of bidirectional edges is a “cycle”)

“Order” refers to these properties

“Partial”: not every two elements need be “comparable” 

i.e., {a,b} s.t. neither a⊑b nor b⊑a

e.g., neither A ⊆ B nor B ⊆ A

Strict partial order: 
irreflexive, rather than 

reflexive



Posets
Partially ordered set (a.k.a Poset)

A non-empty set and a partial order over it

Denoted like (S, ≼)

e.g. S = {S1,S2,S3,S4,S5} where  
S1={0,1,2,3}, S2={1,2,3,4}, S3={1,2,3},  
S4={3,4}, and S5 = {2}.  Poset (S, ⊆)

More generally, (S, ⊆) where S is any set of sets

Verify: P⊆P; P⊆Q ⋀ Q⊆R → P⊆R; P⊆Q ⋀ Q⊆P → P=Q

e.g. Divisibility poset: (Z+, | )

Verify: a|a ; a|b ⋀ b|c → a|c ; a|b ⋀ b|a → a=b

Check: 
- Anti-symmetric 
  (no bidirectional edges),  
- Transitive, 
- Reflexive (all self-loops)

S1 S2

S3

S4

S5



Extremal & Extremum
Maximal & minimal elements of a poset (S, ≼)

x∈S is maximal if ∄y∈S-{x} s.t. x≼y

x∈S is minimal if ∄y∈S-{x} s.t. y≼x

Need not exist (e.g., in (Z,≤)).

Need not be unique when it exists  
(e.g., divisibility poset restricted to integers > 1)

Claim: Every finite poset has at least one maximal and 
one minimal element

Proof by induction on |S|  [Exercise]
x∈S is the greatest element if ∀y∈S, y≼x 

x∈S is the least element if ∀y∈S, x≼y

Useful in induction proofs 
about finite posets

Need not exist. 
Unique when one 

exists.



Other Relations from a Poset
Consider partial order ≼

≺ is the reflexive reduction of ≼ iff ≼ is the reflexive 
closure of ≺, and ≺ itself is irreflexive

a≺b iff a≠b and a≼b

⊑ is the transitive reduction of ≼ iff ≼ is the transitive 
closure of ⊑, and ∀a,b ( a⊑b → ∄m∉{a,b}, a ≼ m ≼ b )

Well-defined for finite posets: Define a⊑b iff a≼b 
and ∄m∉{a,b}, a ≼ m ≼ b. [Prove by induction]
Need not exist for infinite sets (e.g., for (R,≤),  

⊑ defined as above is the equality relation)



Consider strict poset (Z+,⊏), where a ⊏ b iff b/a is prime

Claim: | is the transitive closure of the reflexive closure 
of ⊏  [Verify]

Claim: ⊏ is the transitive reduction of the reflexive 

reduction of | [Verify]

Note: Divisibility poset has 
a transitive reduction  
even though it is infinite

Running Example
Divisibility poset: (Z+, | )

16

8 12

4 6 9 10 14 15

2 3 5 7 11 13

1



For a poset (S, ≼), the transitive reduction of the  

reflexive reduction of ≼, if it exists, has all the 

information about the poset

Recall: For finite posets, guaranteed to exist

Hasse Diagram: the graph of this relation (with 
arrowheads implicit)

Hasse Diagram
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Given a poset (S, ≼) and T ⊆ S

Maximal element in T : x∈T s.t. ∀y∈T, x≼y → y=x 

Minimal element in T : x∈T s.t. ∀y∈T, y≼x → y=x

Greatest element in T : x∈T s.t. ∀y∈T y≼x 

Least element in T : x∈T s.t. ∀y∈T, x≼y

Upper Bound for T : x∈S s.t. ∀y∈T, y≼x 

Lower Bound for T : x∈S s.t. ∀y∈T, x≼y 

Least Upper Bound for T: Least in {x| x u.b. for T} 
Greatest Lower Bound for T: Greatest in {x| x l.b. for T}

Need not exist. 
Unique when one 

exists.

Bounding Elements
Need not exist.

Need not be unique 
when one exists.

Do exist in 
finite posets 

Need not exist. 
Unique when one 

exists.



Running Example

Lower bound

When is c a lower bound for T={a,b}? 

c|a and c|b ⇒ c is a common divisor for {a,b}

Greatest lower bound for {a,b} = gcd(a,b)

Upper bound

d is an upper bound for {a,b} ⇒ a|d, b|d ⇒ d a 

common multiple for {a,b}

Least upper bound for {a,b} = lcm(a,b)

Divisibility poset: (Z+, | )



Total/Linear Order
In some posets every two elements are “comparable”: 
for {a,b}, either a⊑b or b⊑a

Can arrange all the elements in a line, with all 
possible right-pointing edges (plus, all self-loops) 
 
 
 

If finite, has unique maximal and unique minimal 
elements (left and right ends)



Order Extension
A poset P’=(S,≤) is an extension of a poset P=(S,≼) if 
∀a,b∈S, a ≼ b → a ≤ b

Any finite poset can be extended to a total ordering 
(this is called topological sorting)

Prove by induction on |S| 

Induction step: Remove a minimal element, extend 
to a total ordering, reintroduce the removed 
element as the minimum in the total ordering.

For infinite posets? The “Order Extension Principle” is 
typically taken as an axiom! (Unless an even stronger 
axiom called the “Axiom of Choice” is used)



The totally ordered set (Z+, ≤ ), where ≤ is the 

standard “less-than-or-equals” relation, is an extension 
of the divisibility poset  

Because a|b → a ≤ b

Consider another totally ordered set (Z+, ⊑):

For any (a,b) ∈ Z+ × Z+,  a⊑b iff:

a=1, or
a,b both prime or both composite, and a ≤ b, or
a prime and b composite

(Z+, ⊑) extends the divisibility poset [Exercise]

Running Example
Divisibility poset: (Z+, | )


