Sets & Relations

Posets
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Partial Order

Strict partial order:
irreflexive, rather than
reflexive

£
@ A transitive, anti-symmetric and reflexive relation

@ e.g. < for integers, divides for integers, C for sets,
“containment” for line-segments

@ Equivalently, transitive and acyclic (and ir/reflexive)
(a pair of bidirectional edges is a “cycle”)

@ “Order” refers to these properties
@ “Partial”: not every two elements need be “comparable”

@ i.e., {a,b} s.t. neither aCb nor bCa

@ e.g.,, neither AC Bnor B C A



Posets

@ Partially ordered set (a.k.a Poset)
@ A non-empty set and a partial order over it @Sl %2

@ Denoted like (S, <) 9
o e'g' S = {51152153154155} Where (Check: A A V] ) S4

S]-:{OI 1 1213}1 52={ 1 121 314}1 S3={ 1 1213}1 B An’ri-symmg’rric >s

(no bidirectional edges),

S4={3 4} and Ss = {2} Poset (S Q) - Transitive,

- Reflexive (all selF—loops)

@ More generally, (S, €) where S is any set of sets

@ Verify: PCP; PCQ A QSR — PCR; PCQ A QCEP — P=Q

@ e.g. Divisibility poset: (Z+, | )

@ Verify: ala ; alb A blc — alc ; alb A bla — a=b



Extremal & Extremum

@ Maximal & minimal elements of a poset (S, <) Q Q

@ xS is maximal if AyeS-{x} s.t. x<y
@ xeS is minimal if 2yeS-{x} s.t. y<x &

@ Need not exist (e.g., in (Z,2)).

@ Need not be unique when it exists
(e.g., divisibility poset restricted to integers > 1)
@ Claim: Every finite poset has at least one maximal and
one minimal element et i g proofs}
@ Proof by induction on |S| [Exercise] SO
@ xeS is the greatest element if vyeS, y<x | Need not exist.

< Unique when one

xeS is the least element if vyeS, x<y .




Other Relations from a Poset

@ Consider partial order <

D < is the reflexive reduction of < iff < is the reflexive
closure of <, and < itself is irreflexive

@ a<b iff a#b and ax<b

@ C is the transitive reduction of < iff < is the transitive
closure of C, and va,b ( aCb — Zmgfa,b}, a < m < b))

@ Well-defined for finite posets: Define athb iff a<b
and Zm¢{a,b}, a < m < b. [Prove by induction]

@ Need not exist for infinite sets (e.g., for (R,<),
C defined as above is the equality relation)



Running Example
Divisibility poset: (Z+, | )
@ Consider strict poset (Z+,c), where a c b iff b/a is prime

@ Claim: | is the transitive closure of the reflexive closure
of c [Verify]

@ Claim: C is the transitive reduction of the reflexive

reduction of | [Verify] /16\
@ Note: Divisibility poset has Bl

a transitive reduction

even though it is infinite | .————




Hasse Diagram

@ For a poset (S, <), the transitive reduction of the
reflexive reduction of x, if it exists, has all the
information about the poset

@ Recall: For finite posets, guaranteed to exist

@ Hasse Diagram: the graph of this relation (with
arrowheads implicit)
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Bounding Elements

Need not exist.
Need not be uniq

D Given a POS€'|' (S, <) Clnd T & S when one exists.

Do exist in
ue | finite posets

@ Maximal element in T : XeT s.t. VyeT, X<y — y=X

Minimal element in T : XeT s.t. VYT, y<x — y=X

@ Greatest element in T : XeT s.t. vyeT y<x
Least element in T : XeT s.t. VYeT, X<y

@ Upper Bound for T : xeS s.t. VyeT, y<x
Lower Bound for T : XeS s.t. vyeT, x<y

<

Need not exist.
Unique when one
exists.

/

@ Least Upper Bound for T: Least in {x| x u.b. for T}
Greatest Lower Bound for T: Greatest in {x| x L.b. for T}




Running Example
Divisibility poset: (Z+, | )

@ Lower bound
@ When is ¢ a lower bound for T={a,b}?

@ cla and c|lb = ¢ is a common divisor for {a,b}

@ Greatest lower bound for {a,b} = gcd(a,b)
@ Upper bound
@ d is an upper bound for {a,b} = ald, bld = d a
common multiple for {a,b}

@ Least upper bound for {a,b} = lcm(a,b)



Total/Linear Order

@ In some posets every two elements are “comparable”:
for {a,b}, either aCb or bCa

@ Can arrange all the elements in a line, with all
possible right-pointing edges (plus, all self-loops)

ey e el
e

@ If finite, has unique maximal and unique minimal
elements (left and right ends)




Order Extension

@ A poset P'=(S,<) is an extension of a poset P=(S,<) if
va,beS, a<b —-ac<b

@ Any finite poset can be extended to a total ordering
(this is called topological sorting)

@ Prove by induction on |S|

@ Induction step: Remove a minimal element, extend
to a total ordering, reintroduce the removed
element as the minimum in the totfal ordering.

@ For infinite posets? The "Order Extension Principle” is
typically taken as an axiom! (Unless an even stronger
axiom called the “Axiom of Choice” is used)



Running Example

Divisibility poset: (Z+, | )
@ The totally ordered set (Z+, < ), where < is the

standard “less-than-or-equals” relation, is an extension
of the divisibility poset

@ Because alb — a < b
@ Consider another totally ordered set (Z+, C):

@ For any (a,b) € Z*+ x Z+, aCb iff:

@ a=1, or
@ a,b both prime or both composite, and a < b, or
@ a prime and b composite

@ (Z+, C) extends the divisibility poset [Exercise]



