Functions

One-to-one, Onto, Bijections

Types of Functions

Function viewed as a matrix: every column has exactly one cell "on"
Onto Function (surjection): Every row has <u>at least</u> one cell "on"
One-to-One function (injection): Every row has <u>at most</u> one cell "on"
Bijection: Every row has <u>exactly</u> one cell "on"

Surjective Functions

 $\forall y \in B \exists x \in A f(x)=y$

Onto Function (surjection): Every row has <u>at least</u> one cell "on"
 Given f:A→B, one can always define an "equivalent" onto function f':A→Im(f) such that ∀x∈A f(x)=f'(x)

Injective Functions

 $\forall \mathsf{x},\mathsf{x}' \in \mathsf{A} \quad \mathsf{f}(\mathsf{x}) = \mathsf{f}(\mathsf{x}') \rightarrow \mathsf{x} = \mathsf{x}' \quad \bigvee \quad \forall \mathsf{y} \in \mathsf{Im}(\mathsf{f}) \exists ! \mathsf{x} \in \mathsf{A} \quad \mathsf{f}(\mathsf{x}) = \mathsf{y}$

One-to-One function (injection): Every row has <u>at most</u> one cell "on"
 Domain matters : ℤ → ℤ defined as f(x)=x² is <u>not</u> one-to-one, but
 f : ℤ+ → ℤ+ defined as f(x)=x² is one-to-one

Strictly increasing or decreasing functions

Injective \leftrightarrow Invertible

f is said to be invertible if ∃g s.t. g∘f = Id
One-to-one functions are invertible

 \odot Suppose f : A \rightarrow B is one-to-one

Can recover x from f(x): f doesn't lose information

$$\forall y \in Im(f) \exists ! x \in A \quad f(x) = y$$

✓ Let g : B→A be defined as follows:
 ✓ for y∈Im(f), g(y)=x s.t. f(x)=y (well-defined)
 for y∉ Im(f), g(y) = some arbitrary element in A

Then $g \circ f = Id_A$, where $Id_A : A \rightarrow A$ is the identity function over A

g need not be invertible

g(y)

0

Injective \leftrightarrow Invertible

• f is said to be invertible if $\exists g \ s.t. \ g \circ f = Id$ One-to-one functions are invertible And invertible functions are one-to-one \odot Suppose f : A \rightarrow B is invertible • Now, for any $x_1, x_2 \in A$, if $f(x_1) = f(x_2)$, then $g(f(x_1))=g(f(x_2))$ \odot But q(f(x)) = Id(x) = x• Hence, $\forall x_1, x_2 \in A$, if $f(x_1)=f(x_2)$, then $x_1=x_2$

Bijections

 Bijection: both onto and one-to-one
 Every row <u>and</u> every column has <u>exactly</u> one cell "on"
 Every element in the co-domain has exactly one pre-image
 If f : A→B, f⁻¹: B→A such that f⁻¹of: A→A and fof⁻¹: B→B are

both identity functions

Both f and f⁻¹ are invertible, and the inverses are unique

 $(f^{-1})^{-1} = f$

Domain & Co-Domain Sizes

Suppose $f : A \rightarrow B$ where A, B are finite \bigcirc $|Im(f)| \leq |A|$, with equality holding iff f is one-to-one $|Im(f)| \leq |B|$, with equality holding iff f is onto If f is onto, then $|A| \ge |B|$ If f is one-to-one, then |A| ≤ |B|Contrapositive: If |A| > |B|, then f not one-to-one Pigeonhole principle \odot If f is a bijection, then |A| = |B|If |A| = |B|, then f is onto = f in one-to-one = f is a bijection

Composition

• Composition of functions f and g: $g \circ f$: Domain(f) \rightarrow Co-domain(g)

Defined only if Im(f) ⊆ Domain(g)
Typically, Domain(g) = Co-domain(f)
gof: Domain(f) → Co-domain(g)
Im(gof) ⊆ Im(g)

Composition & Onto/One-to-One

Suppose Domain(g) = Co-Domain(f) (then gof well-defined).
Composition "respects onto-ness"
If f and g are onto, gof is onto as well
If gof is onto, then g is onto

Composition & Onto/One-to-One

Suppose Domain(g) = Co-Domain(f) (then gof well-defined).
Composition "respects onto-ness"
If f and g are onto, gof is onto as well
If gof is onto, then g is onto
Composition "respects one-to-one-ness"
If f and g are one-to-one, gof is one-to-one as well
If gof is one-to-one, then f is one-to-one

Composition & Onto/One-to-One

Suppose Domain(g) = Co-Domain(f) (then gof well-defined).
Composition "respects onto-ness"
If f and g are onto, gof is onto as well
If gof is onto, then g is onto
Composition "respects one-to-one-ness"
If f and g are one-to-one, gof is one-to-one as well
If gof is one-to-one, then f is one-to-one

Hence, composition "respects bijections"
If f and g are bijections then gof is a bijection as well
If gof is a bijection, then f is one-to-one and g is onto

Permutation of a string

• To permute = to rearrange

- \odot e.g., π_{53214} (hello) = lleoh
- \odot e.g., π_{35142} (lleoh) = ehlol

Permutations are essentially bijections from the set of positions (here {1,2,3,4,5}) to itself

A bijection from any finite set to itself is called a permutation

Permutations compose to yield permutations (since bijections do so)

е

h

0

5

5

 $Φ e.g., Π_{35142} Ο Π_{53214} = Π_{21534}$

h

e

0

2

3

5

Isomorphism

Bijection with additional "structure preserving properties"

Structure": some relation(s)

 ${\it {\scriptsize o}}$ Consider sets S and S' and relations R \subseteq S \times S and R' \subseteq S' \times S'

An isomorphism between R and R' is a bijection from S to S' such that ∀x,y ∈ S, R(x,y) ↔ R'(f(x),f(y))

An isomorphism

isomorphism