Counting

Permutations & Combinations

Strings

- Given an alphabet (a finite set) B, we can consider strings of length k, made up of characters from the alphabet
 - \varnothing e.g., B = {a,b,c}, and a length-5 string σ = aacca

How many length-k strings exist over an alphabet of size n?

- Note: Grows exponentially with the length]
- Proof by induction: Fix arbitrary alphabet size n. Let the number of k-long strings be a(k). Claim a(k) = n^k.

a(1) = n. For k>1, a k-long string consists of a (k-1)long string followed by a single character. a(k) = a(k-1)·n.

Binary Strings

Ø Binary string: A string with alphabet of size 2 Typically, alphabet {0,1} Number of length-k strings binary strings = 2^k A length-k binary string can be used to represent a subset of a set of size k 2 3 4 5 Take the alphabet to be $[k] \triangleq \{1, ..., k\}$ 1 \mathbf{O} 1 0 0 1 \odot Subset associated with string σ : $S_{\sigma} = \{ i \mid \sigma_i = 1 \}$ **{2,5}** ⊆ **[5]**

Number of subsets of [k] = 2^k

Permutations

Permutations refer to arrangements of a set of symbols as a string, without repetition

A bijection from [n] = $\{1, \dots, n\}$ to the alphabet of size n

Sometimes we want to consider shorter strings without repeating symbols

 1
 2
 3

 C
 a
 d

How many length-k strings which do not have repeating symbols exist over an alphabet of size n?

$$n! = \begin{cases} 1 & \text{if } n=0\\ n \cdot (n-1)! & \text{if } n>0 \end{cases}$$

Permutations

How many length-k strings which do not have repeating symbols exist over an alphabet of size n?

 $\odot P(n,k) = \begin{cases} 0 & \text{if } k > n \\ n!/(n-k)! & \text{otherwise} \end{cases}$

Proof by induction on n (for all k) [Exercise]

Base case, n=1

Induction step: Using $P(n,k) = n \cdot P(n-1,k-1)$

Alternately, P(n,k) = P(n,k-1)·(n-k+1)

 $n!/(n-k)! = n \cdot (n-1) \cdot ... \cdot (n-k+1)$

a.k.a. falling factorial, (n)_k

k times

Ø P(n,n) = n!

Permutations

Combinations

O How many subsets of size k does a set of size n have? We can represent subsets as strings without repetitions Ø But the same subset can be represented as multiple strings: adc, cad, ... We know exactly how many ways k! strings using the same k symbols # k-symbol subsets of n-symbol alphabet = # repetition-free strings of length k, divided by k! $\bigcirc C(n,k) = P(n,k)/k! = n! / ((n-k)! \cdot k!)$ n Also written

C(n,k)

For n,k∈ℕ, C(n,k) = n!/(k!(n-k)!) if k ≤ n, and 0 otherwise

- Selecting k out of n elements is the same as unselecting n-k out of n elements
- O C(n,0) = C(n,n) = 1
- In particular, C(0,0) = 1

 (how many subsets of size 0 does Ø have?)
 C(n,0) + C(n,1) + ... + C(n,n-1) + C(n,n) = 2ⁿ

C(n,k)

(1+x)ⁿ = Σ_{k=0 to n} C(n,k) x^k
(1+x)·(1+x)·(1+x) = (1+x)·(1·1 + 1·x + x·1 + x·x) = 1·1·1 + 1·1·x + 1·x·1 + 1·x·x + x·1·1 + x·1·x + x·x·1 + 1·x·x
Each term is of the form ?·?·? where each ? is 1 or x
Coefficient of x^k = number of strings with exactly k x's out of the n positions = C(n,k)

Proof by induction on n: coefficient of x^k in (1+x)·(... + ax^{k-1} + bx^k + ...) is a+b

a = coefficient of x^{k-1} in (1+x)ⁿ⁻¹ = C(n-1,k-1)
 b = coefficient of x^k in (1+x)ⁿ⁻¹ = C(n-1,k)
 C(n,k) = C(n-1,k-1) + C(n-1,k) (where n,k ≥ 1)

C(n,k)

O(n,k) = C(n-1,k-1) + C(n-1,k) (where $n,k \ge 1$)

- ✓ Easy derivation: Let |S|=n and a ∈ S.
 C(n,k) = # k-sized subsets of S containing a
 + # k-sized subsets of S not containing a
- In fact, gives a recursive definition of C(n,k)
 - Base case (to define for k≤n): C(n,0) = C(n,n) = 1 for all n∈N
 - Ø Or, to define it for all (n,k)∈N×N
 Base case: C(n,0)=1, for all n∈N, and C(0,k)=0 for all k∈Z+

Conventions for n=0 or k=0

- # of length-k strings over an alphabet of size n = n^k
 What if k=0?
 - We define the empty string as a valid string
 - $n^{0} = 1$ such string
 - What if n=0? Empty string can be defined over an empty alphabet as well. So, 1 again.
- The empty string has no repeating symbols: P(n,0) = 1
 P(n,0) = n!/(n-0)! still holds

 \bigcirc P(0,0) = 1 holds too since 0! = 1

Size-0 subsets of a size-n set? There is just one: Ø
O(n,0) = 1. C(n,0) = n!/(0!·n!) still holds
O(0,0) = 1 (since Ø ⊆ Ø)