

Counting

Balls and Bins

How many ways can I throw a set of balls into a set of bins?
Variants based on whether they are considered distinguishable (labelled) or indistinguishable

	Labelled balls	Unlabelled balls		
Labelled bins	Function	Multiset		
Unlabelled bins	Set Partition	Integer Partition		

Further variants: "no bin empty", "at most one ball in a bin"

	Labelled balls	Unlabelled balls
Labelled bins	Function	Multiset
Unlabelled bins	Set Partition	Integer Partition

Each ball must be thrown into a single bin Ø. Throwing: mapping a ball to a bin A function with the set of balls as the domain and the set of bins as the co-domain Number of ways of throwing: Number of functions from A to B $x \in A$ **f(x)** ∈ **B** Function table": A string of length |A|, 1 1 over the alphabet B 2 0 1 3 B |B |A such strings 0 4

How many Functions?

Contraction of the second	Labelled balls	Unlabelled balls
Labelled bins	Function	Multiset
Unlabelled bins	Set Partition	Integer Partition

• Balls \in A, bins \in B. Let |A|=k, |B|=n.

O Unrestricted version:

4 functions f: $A \rightarrow B = n^k$

Every bin can hold at most one ball: One-to-one functions

one-to-one functions from A to B = P(n,k)

Recall Pigeonhole Principle: There is a one-to-one function from A to B only if |B|≥|A|. P(n,k) = 0 for k>n

- # bijections from A to B (only if |A|=|B|) is P(n,n) = n!
- No bin empty: Onto functions
 - # onto functions? A little more complicated.

Inclusion-Exclusion

Ø |S∪T| = |S| + |T| - |S∩T|

 $|R \cup S \cup T| = |R| + |S| + |T| - |R \cap S| - |S \cap T| - |T \cap R| + |R \cap S \cap T|$

Given n finite sets T₁,...,T_n

 $\bigcup_{i \in [n]} \mathsf{T}_i = \sum_{\mathsf{J} \subseteq [n], \ \mathsf{J} \neq \emptyset} (-1)^{\left|\mathsf{J}\right| + 1} \left| \bigcap_{j \in \mathsf{J}} \mathsf{T}_j \right|$

Prove by induction on n [Exercise]

 $= |\bigcup_{i \in [n]} T_i| + |T_{n+1}| - |\bigcup_{i \in [n]} Q_i| \text{ where } Q_i = T_i \cap T_{n+1} \text{ for } i \in [n]$

Onto Functions

Labelled Function **Multiset** bins Unlabelled Set Partition **Integer** Partition bins How many onto functions from A to B? Say A=[k], B=[n]. Let's call it N(k,n)
 $n^{k} - C(n,1)(n-1)^{k} + C(n,2)(n-2)^{k} - ...$ Claim: N(k,n) = $\sum_{i=0 \text{ to } n} (-1)^i C(n,i) (n-i)^k$ One onto functions: $\bigcup_{i \in [n]} T_i$ where $T_i = \{ f: A → B \mid i \notin Im(f) \}$ \bigcirc Inclusion-exclusion to count $|U_{i\in[n]}|$ T_i $T_{i_1} \cap ... \cap T_{i_t} = (n-t)^k$ Ø Number of J⊆[n] s.t. |J|=t is C(n,t) $O[U_{i \in [n]} T_i] = \Sigma_{t \in [n]} (-1)^{t+1} C(n,t) (n-t)^k$ $O(k,n) = n^{k} - \Sigma_{t \in [n]} (-1)^{t+1} C(n,t) (n-t)^{k} = \Sigma_{t=0} t_{0,n} (-1)^{t} C(n,t) (n-t)^{k}$

Labelled balls

Unlabelled balls

	Labelled balls			Unlabelled balls
Labelled bins	Function	all 1-to-1 onto	n ^k P(n,k) N(k,n)	Multiset
Unlabelled bins	Set Partition			Integer Partition

Throwing k unlabelled balls into n distinguishable bins is the same as assigning integers (number of balls) to each bin But the total number of balls is fixed to k A multi-set (a.k.a "bag") is like a set, but allows an element in it to occur one or more times Only multiplicity, not order, matters: e.g., [a,a,b] = [a,b,a] \oslash Formally, specified as a multiplicity function: μ : B $\rightarrow \mathbb{N}$ e.g., $\mu(a)=2$, $\mu(b)=1$, $\mu(x)=0$ for other x. Size of a multi-set: sum of multiplicities: $\Sigma_{x\in B} \mu(x)$ Throwing: Making a multi-set of size k, with elements coming from a ground-set of n elements (the n bins)

Examples

	Labelled balls	Unlabelled balls
Labelled bins	Function	Multiset
Unlabelled bins	Set Partition	Integer Partition

Making a multi-set of size k, with elements coming from a ground-set of n elements

- Place orders for k books from a catalog of n books (may order multiple copies of the same book)
- Fill a pencil box that can hold k pencils, using n types of pencils
- Distribute k candies to n kids (kids are distinguishable, candies are not)
- ${\it \textcircled{o}}$ Solve the equation x_1 + ... + x_n = k with $x_i \in \mathbb{N}$
 - \bigcirc Ground-set of size n, {a₁,...,a_n}. $\mu(a_i)=x_i$.
 - The Can think of $x_1, ..., x_n$ as the bins, and each ball as a 1

Stars and Bars

the second second	Labelled balls	Unlabelled balls
Labelled bins	Function	Multiset
Unlabelled bins	Set Partition	Integer Partition

How many ways can I throw k (indistinguishable) balls into n (distinguishable) bins?

Each such combination can be represented using n-1 "bars" interspersed with k "stars"

øe.g., 3 bins, 7 balls: ★ ★ ★ ▲ ★ ★ ★ ▲

Or, $\star \star \star \star \star \star \star \star \star$ (first two bins are empty)

Number of such combinations = ?

∅ (n-1)+k places. Choose n-1 places for bars, rest get stars

@ C (n+k-1, k) ways

$$\star \bullet \star \star \bullet \bullet \star \star \star$$

Example

	The lines	Labelled balls	Unlabelled balls
	Labelled bins	Function	Multiset
	Unlabelled bins	Set Partition	Integer Partition
?	for the (equation x+y	+z = 11,

 How many solutions are there for the equation x+y+z = 11, with x,y,z ∈ ℤ+?

3 bins, 11 balls: But no bin should be empty!
First, throw one ball into each bin
Now, how many ways to throw the remaining balls into 3 bins?
3 bins, 8 balls

2 bars and 8 stars: e.g., \star \star \star \star \star \star \star \bullet C(10,2) solutions

e.g., above distribution corresponds to x=2, y=1, z=8
Same as k-n balls, n bins without the no-bin-empty restriction

Variants

Function	Multiset
Set Partition	Integer Partition
	Function Set Partition

Our Unrestricted use of bins Multi-set of size k, ground-set of size n No bin empty Multiset of size k, with every multiplicity ≥ 1 Multiset of size k-n (with multiplicities ≥ 0) $\odot C(k-1,n-1)$ At most one ball in each bin Set of size k C(n,k) Ø

	Lal	belled b	alls	Unlabelled balls		
Labelled bins	Function	all 1-to-1	n ^k P(n,k)	Multiset	all 1-to-1	C(n+k-1,k) C(n,k)
Unlabelled bins	Set Partition	οπτο	Ν(Κ,Π)	Integer Partition	οπτο	C(K-1,N-1)

Contraction Contract	Labelled balls	Unlabelled balls
Labelled bins	Function	Multiset
Unlabelled bins	Set Partition	Integer Partition

 (Labelled) elements of the set A are partitioned into (unlabelled) bins

Ø Recall: {P₁,...,P_d} is a partition of A if A = P₁ ∪ ... ∪ P_d, for all distinct i, j, P_i ∩ P_j = Ø, and no part P_i is empty

How many partitions does a set A of k elements have?

S(k,n): #ways A can be partitioned into exactly n parts

This corresponds to the "no bin empty" variant

@ #ways A can be partitioned into at most n parts: $\Sigma_{m\in[n]}$ S(k,m)

Total number of partitions, $B_k = \Sigma_{m \in [k]} S(k,m)$ - Bell number

Stirling number of the 2nd kind

How many Partitions?

	a finite	Labelled balls	Unlabelled balls
Lab	elled ins	Function	Multiset
Unla b	belled ins	Set Partition	Integer Partition

S(k,n): #ways A can be partitioned into exactly n parts
Suppose we labeled the parts as 1,...,n
Such a partition is simply an onto function from A to [n]
N(k,n) ways

But in a partition, the parts are not labelled. With labelling, each partition was counted n! times.

S(k,n) = N(k,n) / n!

	Lal	belled b	alls	Unlabelled balls		
Labelled bins	Function	all 1-to-1 onto	n ^k P(n,k) N(k,n)	Multiset	all 1-to-1 onto	C(n+k-1,k) C(n,k) C(k-1,n-1)
Unlabelled bins	Set Partition	all 1-to-1 onto	Σ _{m∈[n]} S(k,m) O or 1 S(k,n)	Integer Partition		

	Labelled balls	Unlabelled balls	
Labelled	Function	Multiset	
bins	and the state of the		
Unlabelled	Set Partition	Integer Partition	
bins			

Writing k as the sum of n non-negative integers Integer solutions to $x_1 + ... + x_n = k$, s.t. $0 \le x_1 \le ... \le x_n$ No bin empty" variant: x_i are positive integers Solution Number of such solutions called the partition number $p_n(k)$ O Number of solutions for the unrestricted variant: $p_n(k+n)$ $x_1 + ... + x_n = k$ s.t. $0 \le x_1 \le ... \le x_n$ \leftrightarrow y₁ + ... + y_n = k+n s.t. 1 \leq y₁ \leq ... \leq y_n where y_i = x_i+1 O "At most one ball in a bin" variant: 1 if n k, 0 otherwise

Labelled balls Unlabelled balls Partition Labelled **Function Multiset** bins Unlabelled Number Set Partition **Integer** Partition bins $o_{p_0}(0) = 1$, if k>0 $p_0(k) = 0$, and if k<n $p_n(k) = 0$ $p_n(k) = p_n(k-n) + p_{n-1}(k-1)$ $\mathbf{0}$ $\mathbf{0}$ $1 < x_1 \leq ... \leq x_n$ 2 2 $+ | \{ (x_1, ..., x_n) | x_1 + ... + x_n = k, \}$ $1 = x_1 \leq ... \leq x_n \}$ $\mathbf{0}$ 0 0 0

Labelled balls			Unlabelled balls		
Function	all	n ^k	Multiset	all	C(n+k-1,k)
	1-to-1	 		1-to-1	C(n,k)
	onto	N(k,n)		onto	C(k-1,n-1)
Unlabelled Set	all	Σ _{m∈[n]} S(k,m)	Integer Partition	all	p _n (k+n)
	1-to-1	0 or 1		1-to-1	0 or 1
Partition	tition onto	S(k,n)		onto	p _n (k)
	La Function Set Partition	Labelled bFunctionall1-to-1ontoontoall1-to-1ontoPartitionall0ntoonto	Labelled ballsFunctionallnk1-to-1P(n,k)ontoN(k,n)Set Partitionall $\Sigma_{m \in [n]} S(k,m)$ 1-to-10 or 1ontoS(k,n)	Labelled ballsUnlaFunctionallnkMultiset1-to-1P(n,k)MultisetInteger0ntoN(k,n)N(k,n)IntegerSet Partition1-to-10 or 1Integer Partition	Labelled ballsUnlabelled BFunctionallnkMultisetall $1-to-1$ P(n,k) $1-to-1$ $1-to-1$ ontoN(k,n) $1-to-1$ 0 or 1Set Partitionall $\Sigma_{m \in [n]} S(k,m)$ Integer Partitionall