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How many ways can I throw a set of balls into a set of bins?

Variants based on whether they are considered 
distinguishable (labelled) or indistinguishable

Further variants:  “no bin empty”, “at most one ball in a bin”
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Each ball must be thrown into a single bin

Throwing: mapping a ball to a bin

A function with the set of balls as the domain and the set 
of bins as the co-domain

Number of ways of throwing:

Number of functions from A to B

“Function table”: A string of length |A|,  
over the alphabet B

|B||A| such strings

x ∈ A f(x) ∈ B

1 1

2 0

3 1

4 0



Balls ∈ A, bins ∈ B. Let |A|=k, |B|=n.

Unrestricted version:

# functions f: A → B =  nk

Every bin can hold at most one ball: One-to-one functions

# one-to-one functions from A to B = P(n,k)

Recall Pigeonhole Principle: There is a one-to-one function 
from A to B only if |B|≥|A|.  P(n,k) = 0  for k>n

# bijections from A to B (only if |A|=|B|) is P(n,n) = n!

No bin empty: Onto functions

# onto functions? A little more complicated.

How many 
Functions?
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Inclusion-Exclusion

Given n finite sets T1,…,Tn

Prove by induction on n    [Exercise]

| ∪i∈[n+1] Ti | = | (∪i∈[n] Ti) ∪ Tn+1 |  

 = |∪i∈[n] Ti| + |Tn+1| - |∪i∈[n] Qi| where Qi = Ti ∩ Tn+1 for i∈[n]

⋃
i∈[n]

Ti = ∑
J⊆[n], J≠Ø

(-1)
J +1

⋂
j∈J

Tj
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◆
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|S∪T| = |S| + |T| - |S∩T|

|R∪S∪T| = |R|+|S|+|T| - |R∩S| - |S∩T| - |T∩R| + |R∩S∩T|



How many onto functions from A to B? Say A=[k], B=[n].

Let’s call it N(k,n)

Claim:  N(k,n) = Σi=0 to n  (-1)i C(n,i) (n-i)k

Non-onto functions: ∪i∈[n] Ti  where  Ti = { f:A→B | i∉Im(f) }

Inclusion-exclusion to count |∪i∈[n]  Ti|

|∩j∈J Tj | = (n-t)k where t=|J|

f ∈ Ti1 ∩…∩ Tit ↔ Im(f) ⊆ [n] - {i1,…,it}

|Ti1 ∩ … ∩ Tit| = (n-t)k

Number of J⊆[n] s.t. |J|=t is C(n,t)

|∪i∈[n] Ti| = Σt∈[n] (-1)t+1 C(n,t) (n-t)k

N(k,n) = nk - Σt∈[n]  (-1)t+1 C(n,t) (n-t)k = Σt=0 to n  (-1)t C(n,t) (n-t)k

nk - C(n,1) (n-1)k + C(n,2) (n-2)k - … 
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| ∪i∈[n] Ti | = ΣJ⊆[n],J≠Ø (-1)|J|+1 |∩j∈J Tj|
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How many ways to throw a set of k balls into a set of n bins?

all nk

1-to-1 P(n,k)

onto N(k,n)
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Throwing k unlabelled balls into n distinguishable bins is the 
same as assigning integers (number of balls) to each bin

But the total number of balls is fixed to k

A multi-set (a.k.a “bag”) is like a set, but allows an element 
in it to occur one or more times 

Only multiplicity, not order, matters: e.g., [a,a,b] = [a,b,a]

Formally, specified as a multiplicity function: μ : B → N 

e.g., μ(a)=2, μ(b)=1, μ(x) = 0 for other x.

Size of a multi-set: sum of multiplicities: Σx∈B μ(x)

Throwing: Making a multi-set of size k, with elements coming 
from a ground-set of n elements (the n bins)



Examples

Making a multi-set of size k, with elements coming from a 
ground-set of n elements

Place orders for k books from a catalog of n books (may 
order multiple copies of the same book)

Fill a pencil box that can hold k pencils, using n types of 
pencils

Distribute k candies to n kids (kids are distinguishable, 
candies are not)

Solve the equation x1 + … + xn = k with xi ∈ N

Ground-set of size n, {a1,…,an}. μ(ai)=xi.

Can think of x1,…,xn as the bins, and each ball as a 1
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Stars and Bars

How many ways can I throw k (indistinguishable) balls into n 
(distinguishable) bins?

Each such combination can be represented using n-1 “bars” 
interspersed with k “stars”

e.g., 3 bins, 7 balls:  ★ ★ ★  ▎★ ★ ★  ▎★ 
Or,  ▎ ▎★ ★ ★ ★ ★ ★ ★ (first two bins are empty)

Number of such combinations = ?

(n-1)+k places. Choose n-1 places for bars, rest get stars

C ( n+k-1, k) ways ★     ★ ★ ★     ★ ★ ★▎            ▎
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Example

How many solutions are there for the equation x+y+z = 11, 
with x,y,z ∈ Z+?

3 bins, 11 balls: But no bin should be empty!

First, throw one ball into each bin

Now, how many ways to throw the remaining balls into 3 bins?

3 bins, 8 balls

2 bars and 8 stars: e.g., ★ ▎ ▎★ ★ ★ ★ ★ ★ ★

C(10,2) solutions

e.g., above distribution corresponds to x=2, y=1, z=8

Same as k-n balls, n bins without the no-bin-empty restriction
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Unrestricted use of bins

Multi-set of size k, ground-set of size n

Stars and Bars:  C(n+k-1,n-1)

No bin empty

Multiset of size k, with every multiplicity ≥ 1

Multiset of size k-n (with multiplicities ≥ 0)

C(k-1,n-1)

At most one ball in each bin

Set of size k

C(n,k)
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How many ways to throw a set of k balls into a set of n bins?

all nk

1-to-1 P(n,k)

onto N(k,n)

all C(n+k-1,k)

1-to-1 C(n,k)

onto C(k-1,n-1)



(Labelled) elements of the set A are partitioned into  
(unlabelled) bins

Recall: {P1,…,Pd} is a partition of A if A = P1 ∪ … ∪ Pd, for all 
distinct i,j, Pi ∩ Pj = Ø, and no part Pi is empty

How many partitions does a set A of k elements have?

S(k,n): #ways A can be partitioned into exactly n parts

This corresponds to the “no bin empty” variant

#ways A can be partitioned into at most n parts: Σm∈[n] S(k,m)

Total number of partitions,  
Bk = Σm∈[k] S(k,m)

Stirling number 
of the 2nd kind
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S(k,n): #ways A can be partitioned into exactly n parts

Suppose we labeled the parts as 1,…,n

Such a partition is simply an onto function from A to [n]

N(k,n) ways

But in a partition, the parts are not labelled. With labelling, 
each partition was counted n! times. 

S(k,n) = N(k,n) / n!
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How many ways to throw a set of k balls into a set of n bins?

all nk

1-to-1 P(n,k)

onto N(k,n)

all C(n+k-1,k)

1-to-1 C(n,k)

onto C(k-1,n-1)

all Σm∈[n] S(k,m)

1-to-1 0 or 1

onto S(k,n)



Writing k as the sum of n non-negative integers

Integer solutions to x1 + … + xn = k, s.t.  0 ≤ x1 ≤ … ≤ xn

“No bin empty” variant: xi are positive integers

Number of such solutions called the partition number pn(k)

Number of solutions for the unrestricted variant: pn(k+n)

x1 + … + xn = k s.t.  0 ≤ x1 ≤ … ≤ xn  
    ↔ y1 + … + yn = k+n s.t. 1 ≤ y1 ≤ … ≤ yn where yi = xi+1

“At most one ball in a bin” variant: 1 if n≥k, 0 otherwise
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pn(k) =  | { (x1,…,xn) | x1+…+xn=k, 1 ≤ x1 ≤…≤ xn} |

p0(0) = 1, if k>0 p0(k) = 0, and if k<n pn(k) = 0

pn(k) = pn(k-n) + pn-1(k-1)

| { (x1,…,xn) | x1+…+xn=k,  
               1 < x1 ≤…≤ xn } | 
+ | { (x1,…,xn) | x1+…+xn=k,  
                  1 = x1 ≤…≤ xn } |
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Partition 
Number

0 1 2 3 4 5 6 7 8

0 1 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1

2 0 0 1 1 2 2 3 3 4

3 0 0 0 1 1 2 3 4 5

4 0 0 0 0 1 1 2 3 5

5 0 0 0 0 0 1 1 2 3

6 0 0 0 0 0 0 1 1 2

7 0 0 0 0 0 0 0 1 1

8 0 0 0 0 0 0 0 0 1

k
n
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How many ways to throw a set of k balls into a set of n bins?

all nk

1-to-1 P(n,k)

onto N(k,n)

all C(n+k-1,k)

1-to-1 C(n,k)

onto C(k-1,n-1)

all Σm∈[n] S(k,m)

1-to-1 0 or 1

onto S(k,n)

all pn(k+n)

1-to-1 0 or 1

onto pn(k)


