
Graphs

Graphs
What is “connected” to what

Many things we deal with in computer science are graphs

Networks: humans, communication, computation,
transportation, knowledge

Courtesy: Microsoft Academic Search

Courtesy: Digital Humanities Specialist @ Stanford

C
ou

rt
es

y:
 c

ab
le

m
ap

.in
fo

Courtesy: New Scientist

C
ou

rt
es

y:
gi

ga
fl
op

.d
em

on
.c
o.
uk

Many Applications
Often want to design graphs with “good properties”

Connecting processors in a super-computer

Data structures (e.g., “trees”) to keep data in an easy-to-
search/manipulate fashion

Typically want graphs with few connections (i.e., edges), but
good “connectivity” -- i.e., (possibly many) short paths
between any two nodes

Very efficient algorithms known for relevant graph problems

e.g., breadth/depth-first search, shortest path algorithm...

But many other graph problems are known to be “NP-hard”

e.g., Traveling Salesperson Problem (TSP): visit all cities, by
traveling the least distance

Grap
hs

in a
ctio

n

Simple Graphs

A simple graph G = (V,E), where

E ⊆ { {a,b} | a,b ∈ V, a≠b }

V is the set of nodes, E the set of edges

V non-empty and finite (for us)

Note: the “drawing” is not part of the graph, only the
connectivity is

Simple Graphs
Recall graphs for relations: directed graphs with self-loops

Each element in the domain forms a node

Each ordered pair (a,b) in the relation forms an edge

Edges of the form (a,a) are “self-loops”

A simple graph is essentially a symmetric, irreflexive relation

Symmetric: An undirected edge {a,b} can be modelled as two
directed edges (a,b) and (b,a)

Irreflexive: No self-loops

In a “non-simple” graph, can allow more than one edge between
any pair (multigraphs), or more generally, allow weights on
edges (weighted graphs)

Examples
Complete graph Kn : n nodes, with all possible edges between them

E = { {a,b} | a,b ∈ V, a≠b }

edges, |E| = n(n-1)/2

Cycle Cn : V = { v1,...,vn }, E = { {vi,vj} | j=i+1 or (i=1 and j=n) }

Bipartite graph : V = V1 ∪ V2, where V1 ∩ V2 = Ø (i.e., a partition),
and no edge between two nodes in the same “part”:
E ⊆ { {a,b} | a∈V1, b∈V2 }

e.g., Cn where n is even

Complete bipartite graph Kn1,n2 : Bipartite graph, with |V1|=n1, |V2|=n2
and E = { {a,b} | a∈V1, b∈V2 }

edges, |E| = n1⋅n2

Later: Hypercube, Trees

Graph Isomorphism
G1 = (V1,E1) and G2 = (V2,E2) are isomorphic if there is a bijection
f:V1 → V2 such that {u,v} ∈ E1 iff {f(u),f(v)} ∈ E2

Computational problem: check if two graphs (given as adjacency
matrices) are isomorphic

Can rule out if certain “invariants” are not preserved (e.g. |V|,|E|)

In general, no “efficient” algorithm known, when graph is large

Some believe no efficient algorithm exists!

b c

da

1

24

3a
b
c
d

1
2
3
4

w y

zx

w
x
y
z

C4

K2,2

A subgraph of G = (V,E) is a graph G’ = (V’,E’) such that
V’ ⊆ V and E’ ⊆ E

To get a subgraph: Remove zero or more vertices along
with the edges incident on them, and further remove
zero or more edges

Induced subgraph: omit the last step

Subgraphs

