
Graphs



Graphs
What is “connected” to what


Many things we deal with in computer science are graphs


Networks: humans, communication, computation, 
transportation, knowledge
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Many Applications
Often want to design graphs with “good properties”


Connecting processors in a super-computer


Data structures (e.g., “trees”) to keep data in an easy-to-
search/manipulate fashion


Typically want graphs with few connections (i.e., edges), but 
good “connectivity” -- i.e., (possibly many) short paths 
between any two nodes


Very efficient algorithms known for relevant graph problems


e.g., breadth/depth-first search, shortest path algorithm...


But many other graph problems are known to be “NP-hard”


e.g., Traveling Salesperson Problem (TSP): visit all cities, by 
traveling the least distance
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Simple Graphs

A simple graph G = (V,E), where


E ⊆ { {a,b} | a,b ∈ V, a≠b }


V is the set of nodes, E the set of edges


V non-empty and finite (for us)


Note: the “drawing” is not part of the graph, only the 
connectivity is



Simple Graphs
Recall graphs for relations: directed graphs with self-loops


Each element in the domain forms a node


Each ordered pair (a,b) in the relation forms an edge


Edges of the form (a,a) are “self-loops”


A simple graph is essentially a symmetric, irreflexive relation


Symmetric: An undirected edge {a,b} can be modelled as two 
directed edges (a,b) and (b,a)


Irreflexive: No self-loops


In a “non-simple” graph, can allow more than one edge between 
any pair (multigraphs), or more generally, allow weights on 
edges (weighted graphs)



Examples
Complete graph Kn : n nodes, with all possible edges between them


E = { {a,b} | a,b ∈ V, a≠b }

# edges, |E| = n(n-1)/2


Cycle Cn : V = { v1,...,vn }, E = { {vi,vj} | j=i+1 or (i=1 and j=n) }


Bipartite graph : V = V1 ∪ V2, where V1 ∩ V2 = Ø (i.e., a partition), 
and no edge between two nodes in the same “part”:  
E ⊆ { {a,b} | a∈V1, b∈V2 }


e.g., Cn where n is even


Complete bipartite graph Kn1,n2 : Bipartite graph, with |V1|=n1, |V2|=n2 
and E = { {a,b} | a∈V1, b∈V2 }


# edges, |E| = n1⋅n2


Later: Hypercube, Trees



Graph Isomorphism
G1 = (V1,E1) and G2 = (V2,E2) are isomorphic if there is a bijection 
f:V1 → V2 such that {u,v} ∈ E1 iff {f(u),f(v)} ∈ E2 

 

 

 

 

 

 

 

Computational problem: check if two graphs (given as adjacency 
matrices) are isomorphic


Can rule out if certain “invariants” are not preserved (e.g. |V|,|E|)


In general, no “efficient” algorithm known, when graph is large


Some believe no efficient algorithm exists!
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A subgraph of G = (V,E) is a graph G’ = (V’,E’) such that 
V’ ⊆ V and E’ ⊆ E 
 
 
 
 
 

To get a subgraph: Remove zero or more vertices along 
with the edges incident on them, and further remove 
zero or more edges


Induced subgraph: omit the last step

Subgraphs


