pmr

Graphs

Walks and Paths

Bridges of Konigsberg

@ Cross each bridge exactly once

@ Impossible! But how do we know for sure?

Bridges of Konigsberg

@ Cross each bridge exactly once

- S

Add a node for », ﬂ

each bridge too, i% \:I
we want it to be a L]

9 simple graph j \\ /

@ Impossible! But how do we know for sure?

Walks, Paths & Cycles

@ A walk (of length k, k > 0) from node a to node b is a
sequence of nodes (vo, Vi, ... , Vk) such that

@Vo=a,Vk=Db
o for all i € {0,...,k-1}, the edge {vi,visi} € E

@ Length is the number of edges in a walk. Could be 0.

@ If a walk has no node repeating, then it is called a path

@ If a walk of length k23 has vo=vk, but no other two nodes
are equal, then it is called a cycle

@ Note: we require a cycle to be of length at least 3

@ A graph is acyclic if it has no cycles (i.e., no Ck is a
subaraph of G)

Connectivity

@ Given a graph G, whether there is a path between two
nodes u and v is an important question regarding G

@ u is said to be connected to v if there is such a path

@ u connected to v iff there is a walk from u to v

@ Relation Connected(u,v) is an equivalence relation

: : e Walks can be spliced
@ Reflexive, Symmetric and Transitive esether o et wal

@ Equivalence classes of this relation are called the
connected components of G

Degree of a node

@ Given a simple graph G = (V,E), for each node veV, the
degree of v is the number of edges incident on v

.

@ Formally, deg(v) = | { u: quyv; € E } |

Note: Definition restricted
to simple graphs

@ Counting edges in two different ways: 2 - |E| = 3,cv deg(v)
@ Degree sequence: sorted list of degrees. (e.g.: 0,1,2,2,3)

@ Degree sequence invariant under isomorphism

Eulerian Trail & Circuit

@ Eulerian trail: a walk visiting every edge exactly once

@ Eulerian trail exists — at most 2 odd degree nodes

@ Enter(v) = { {via,vit | vi = v }, Exit(v) = { tviviaf | vi= v }
partition all the edges incident on v. |[Enter(v)|=|Exit(v)|
for all v except the start and end nodes of the walk.

@ Eulerian circuit: a closed walk visiting every edge exactly once

@ Eulerian circuit exists — no odd degree nodes

@ If no odd degree nodes and all edges in one connected
component, then must have an Eulerian circuit!

@ Proof sketch: Must be cyclic [Why?] Remove a cycle: still no
odd degree node. Inductively obtain Eulerian circuits in each
connected component in the remaining graph. Can stitch
them all onto the removed cycle into one circuit.

Hamiltonian Cycle

@ Eulerian circuit: a closed walk visiting every edge exactly once

@ Eulerian circuit exists «— all edges in the same connected
component and no odd degree nodes

@ Can efficiently find one if they exist

@ Hamiltonian Cycle: a cycle that contains all the nodes in the
graph

@ No efficient algorithm known to check if a graph has a
Hamiltonian cycle!

@ An "NP-hard” problem. Widely believed that no efficient
algorithm exists!

@ (cf. Graph Isomorphism: It is believed to be hard, but
also believed to be not NP-hard)

Prove via
contradiction

™ Distance

@ Shortest walk between nodes u and

@ Shortest path is of great interest in many applications

(In many applications, the

edges on the graph will have
“lengths”. In simple graphs, all

ledges are of length 1.

J

v is always a path

@ e.g., nodes correspond to locations on a map and edges

are roads, optic fibers etc.

@ Also, graph can be used to model

probabilistic processes,

with shortest path indicating the most likely outcome

@ Length of the shortest path between u and v is called the
distance between u and v (e if no path)

MiN w: u-v walk Length(W)

@ Diameter is the largest distance in a graph (can be o)
mGXu,v DISfClnCQ(U,V) - mGXu,V man u-v walk Lengfh(W)

hortest Paths in Action

@ Obvious example: nodes correspond tfo locations on a map and
edges are roads, optic fibers efc.

® Weighted edges: each edge has its own “length” (instead of 1)

@ But also over more abstract graphs

@ e.g., Graph-based models in AI/machine-learning for modeling
probabilistic systems

@ e.g., a graph, modeling speech production: nodes correspond
to various “states” the vocal chords/lips etc. could be in
while producing a given a sound sequence. Edges show
transitions (next state) over time. Shortest path in this
graph gives the "most likely” word that was spoken.

