
Graphs
Walks and Paths

Cross each bridge exactly once

Impossible! But how do we know for sure?

Bridges of Königsberg

?!

Bridges of Königsberg

Cross each bridge exactly once

Impossible! But how do we know for sure?

Add a node for
each bridge too, if
we want it to be a

simple graph

Walks, Paths & Cycles
A walk (of length k, k ≥ 0) from node a to node b is a
sequence of nodes (v0, v1, ... , vk) such that

v0 = a, vk = b

for all i ∈ {0,...,k-1}, the edge {vi,vi+1} ∈ E

Length is the number of edges in a walk. Could be 0.

If a walk has no node repeating, then it is called a path

If a walk of length k≥3 has v0=vk, but no other two nodes

are equal, then it is called a cycle

Note: we require a cycle to be of length at least 3

A graph is acyclic if it has no cycles (i.e., no Ck is a
subgraph of G)

Connectivity

Given a graph G, whether there is a path between two
nodes u and v is an important question regarding G

u is said to be connected to v if there is such a path

u connected to v iff there is a walk from u to v

Relation Connected(u,v) is an equivalence relation

Reflexive, Symmetric and Transitive

Equivalence classes of this relation are called the
connected components of G

Walks can be spliced
together to get walks

Degree of a node

Given a simple graph G = (V,E), for each node v∈V, the
degree of v is the number of edges incident on v

Formally, deg(v) = | { u : {u,v} ∈ E } |

Counting edges in two different ways: 2 ⋅ |E| = ∑v∈V deg(v)

Degree sequence: sorted list of degrees. (e.g.: 0,1,2,2,3)

Degree sequence invariant under isomorphism

Note: Definition restricted
to simple graphs

Eulerian Trail & Circuit
Eulerian trail: a walk visiting every edge exactly once

Eulerian trail exists → at most 2 odd degree nodes

Enter(v) = { {vi-1,vi} | vi = v }, Exit(v) = { {vi,vi+1} | vi = v }
partition all the edges incident on v. |Enter(v)|=|Exit(v)|
for all v except the start and end nodes of the walk.

Eulerian circuit: a closed walk visiting every edge exactly once

Eulerian circuit exists → no odd degree nodes

If no odd degree nodes and all edges in one connected
component, then must have an Eulerian circuit!

Proof sketch: Must be cyclic [Why?] Remove a cycle: still no
odd degree node. Inductively obtain Eulerian circuits in each
connected component in the remaining graph. Can stitch
them all onto the removed cycle into one circuit.

Hamiltonian Cycle
Eulerian circuit: a closed walk visiting every edge exactly once

Eulerian circuit exists ⟷ all edges in the same connected
component and no odd degree nodes

Can efficiently find one if they exist

Hamiltonian Cycle: a cycle that contains all the nodes in the
graph

No efficient algorithm known to check if a graph has a
Hamiltonian cycle!

An “NP-hard” problem. Widely believed that no efficient
algorithm exists!

(cf. Graph Isomorphism: It is believed to be hard, but
also believed to be not NP-hard)

Distance
Shortest walk between nodes u and v is always a path

Shortest path is of great interest in many applications

e.g., nodes correspond to locations on a map and edges
are roads, optic fibers etc.

Also, graph can be used to model probabilistic processes,
with shortest path indicating the most likely outcome

Length of the shortest path between u and v is called the
distance between u and v (∞ if no path)

Diameter is the largest distance in a graph (can be ∞)

In many applications, the
edges on the graph will have
“lengths”. In simple graphs, all
edges are of length 1.

min W: u-v walk Length(W)

maxu,v Distance(u,v) = maxu,v minW: u-v walk Length(W)

Prove via
contradiction

Hence,
 ∃ walk → ∃ path

Shortest Paths in Action
Obvious example: nodes correspond to locations on a map and
edges are roads, optic fibers etc.

Weighted edges: each edge has its own “length” (instead of 1)

But also over more abstract graphs

e.g., Graph-based models in AI/machine-learning for modeling
probabilistic systems

e.g., a graph, modeling speech production: nodes correspond
to various “states” the vocal chords/lips etc. could be in
while producing a given a sound sequence. Edges show
transitions (next state) over time. Shortest path in this
graph gives the “most likely” word that was spoken.

Grap
hs

in a
ctio

n

