
Graphs
Walks and Paths



Cross each bridge exactly once 
 
 
 
 
 
 
 

Impossible! But how do we know for sure?

Bridges of Königsberg

?!



Bridges of Königsberg

Cross each bridge exactly once 
 
 
 
 
 
 
 

Impossible! But how do we know for sure?

Add a node for 
each bridge too, if 
we want it to be a 

simple graph



Walks, Paths & Cycles
A walk (of length k, k ≥ 0) from node a to node b is a 
sequence of nodes (v0, v1, ... , vk) such that


v0 = a, vk = b


for all i ∈ {0,...,k-1}, the edge {vi,vi+1} ∈ E


Length is the number of edges in a walk. Could be 0.


If a walk has no node repeating, then it is called a path


If a walk of length k≥3 has v0=vk, but no other two nodes 

are equal, then it is called a cycle


Note: we require a cycle to be of length at least 3


A graph is acyclic if it has no cycles (i.e., no Ck is a 
subgraph of G)



Connectivity

Given a graph G, whether there is a path between two 
nodes u and v is an important question regarding G


u is said to be connected to v if there is such a path


u connected to v iff there is a walk from u to v


Relation Connected(u,v) is an equivalence relation


Reflexive, Symmetric and Transitive 


Equivalence classes of this relation are called the 
connected components of G

Walks can be spliced 
together to get walks



Degree of a node

Given a simple graph G = (V,E), for each node v∈V, the 
degree of v is the number of edges incident on v 
 
 

Formally, deg(v) = | { u : {u,v} ∈ E } |


Counting edges in two different ways: 2 ⋅ |E| = ∑v∈V deg(v)


Degree sequence: sorted list of degrees. (e.g.: 0,1,2,2,3)


Degree sequence invariant under isomorphism

Note: Definition restricted 
to simple graphs



Eulerian Trail & Circuit
Eulerian trail: a walk visiting every edge exactly once


Eulerian trail exists → at most 2 odd degree nodes


Enter(v) = { {vi-1,vi} | vi = v }, Exit(v) = { {vi,vi+1} | vi = v } 
partition all the edges incident on v. |Enter(v)|=|Exit(v)| 
for all v except the start and end nodes of the walk.


Eulerian circuit: a closed walk visiting every edge exactly once


Eulerian circuit exists → no odd degree nodes

If no odd degree nodes and all edges in one connected 
component, then must have an Eulerian circuit!


Proof sketch: Must be cyclic [Why?] Remove a cycle: still no 
odd degree node. Inductively obtain Eulerian circuits in each 
connected component in the remaining graph. Can stitch 
them all onto the removed cycle into one circuit.



Hamiltonian Cycle
Eulerian circuit: a closed walk visiting every edge exactly once


Eulerian circuit exists ⟷ all edges in the same connected 
component and no odd degree nodes


Can efficiently find one if they exist


Hamiltonian Cycle: a cycle that contains all the nodes in the 
graph


No efficient algorithm known to check if a graph has a 
Hamiltonian cycle!


An “NP-hard” problem. Widely believed that no efficient 
algorithm exists!


(cf. Graph Isomorphism: It is believed to be hard, but 
also believed to be not NP-hard)



Distance
Shortest walk between nodes u and v is always a path


Shortest path is of great interest in many applications


e.g., nodes correspond to locations on a map and edges 
are roads, optic fibers etc.


Also, graph can be used to model probabilistic processes, 
with shortest path indicating the most likely outcome


Length of the shortest path between u and v is called the 
distance between u and v (∞ if no path) 
                    


Diameter is the largest distance in a graph (can be ∞) 

In many applications, the 
edges on the graph will have 
“lengths”. In simple graphs, all 
edges are of length 1.

min W: u-v walk Length(W)

maxu,v Distance(u,v) = maxu,v minW: u-v walk Length(W)

Prove via 
contradiction

Hence, 
 ∃ walk → ∃ path



Shortest Paths in Action
Obvious example: nodes correspond to locations on a map and 
edges are roads, optic fibers etc.


Weighted edges: each edge has its own “length” (instead of 1)


But also over more abstract graphs


e.g., Graph-based models in AI/machine-learning for modeling 
probabilistic systems


e.g., a graph, modeling speech production: nodes correspond 
to various “states” the vocal chords/lips etc. could be in 
while producing a given a sound sequence. Edges show 
transitions (next state) over time. Shortest path in this 
graph gives the “most likely” word that was spoken.
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