Graphs

Graph Colouring

Graph Colouring

Recall bi-partite graphs

We can "colour" the nodes using 2 colours (which part they are in) so that <u>no edge between nodes of the same colour</u>

More generally, a colouring (using k colours) is proper if there is no edge between nodes of the same colour

So k-colouring: a function c : V → {1,..,k} s.t. $\forall x, y \in V$ {x,y} ∈ E → c(x)≠c(y)

The least number of colours possible in a proper colouring of G is called the Chromatic number of G, $\chi(G)$

G has a k-colouring ↔ $\chi(G) ≤ k$

𝔅 G has no k-1-colouring ↔ χ (G) ≥ k

Colouring is Upper-bounding χ (G)

Graph Colouring Suppose H is a subgraph of G. Then: \odot G has a k-colouring \rightarrow H has a k-colouring o i.e., $\chi(G) \geq \chi(H)$ Lower-bounding $\chi(G)$ 𝔄 e.g., G has K_n as a subgraph → χ (G) > n-1 (i.e., χ (G) ≥ n) \circ e.g., G has C_n for odd n as a subgraph $\rightarrow \chi(G) > 2$ (coming up) Summary: One way to show $k_{lower} \leq \chi(G) \leq k_{upper}$ Show a colouring $c: V \rightarrow \{1, ..., k_{upper}\}$ And show a subgraph H with $k_{lower} \leq \chi(H)$ Isomorphism preserves χ (exercise)

Graph Colouring

The origins: map-making

- Graph": one node for each country; an edge between countries which share a border
- Neighbouring countries shouldn't have the same colour. Use as few colours as possible.
- Efficient algorithms known for colouring many special kinds of graphs with as few colours as possible
 - But computing chromatic number in general is believed to be "hard" (it is NP-hard)

Bi-partite Graph

2k

2k+1

2k-1

2k-2

- O Claim: for all integers n≥1, C_{2n+1} is <u>not</u> bi-partite
- Ø Base case: n=1. C₃ has chromatic number 3. ✓
- Induction step: For all integers k ≥ 2 :
 Induction hypothesis: C_{2k-1} is not bi-partite (corresponds to n=k-1)
 To prove: C_{2k+1} is not bi-partite (corresponds to n=k)
 - Will prove contrapositive: C_{2k+1} bi-partite $\rightarrow C_{2k-1}$ bi-partite
 - Suppose a proper 2-colouring c:{0,..,2k} → {1,2} of C_{2k+1}.
 - Then, c(0) ≠ c(2k) ≠ c(2k-1) ≠ c(2k-2). i.e., c(0)=c(2k-1)≠c(2k-2).
 - Only edge in C_{2k-1} not in C_{2k+1} is $\{0, 2k-2\}$.
 - So c respects all edges of C_{2k-1} .
 - So c':{0,..,2k-2} → {1,2} with c'(u)=c(u) a proper colouring of C_{2k-1}.

When G has no odd cycle, this gives a 2-colouring

Bi-partite Graph

Theorem: G (with |V|>1) is bipartite iff it contains no odd cycle
To prove: If G not bipartite then it has an odd cycle
G (|V|>1) not bipartite ⇒ some such connected component
Fix v in this component and partition its nodes as
A = { x | dist(x,v) is even }, B = { x | dist(x,v) is odd }
Not bipartite ⇒ ∃ edge e={x,y} where x,y∈A or x,y∈B

W.I.o.g shortest paths from v to x,y are of the form P||Q and ^Y P||R where Q, R are paths from u to x,y and intersect only at u
Q and R are both even or both odd length
Cycle Q||e||R^{rev} is an odd cycle

D

R

Complete Graph

Suppose G has n nodes. Then, χ (G)=n ↔ G is isomorphic to K_n

→: We will prove the contrapositive: i.e., that if G with n
 nodes is not isomorphic to K_n, then $\chi(G) \neq n$.

Suppose G=(V,E) is not isomorphic to K_{|V|} ⇒ ∃ distinct u,v ∈ V s.t. {u,v} ∉ E

⇒ A proper colouring which assigns the same colour to both u and v, and |V|-2 other colours to other nodes ⇒ $\chi(G) \leq |V|-1$

Cliques and Independent Sets

Clique number ω(G) : Largest k s.t. G has a subgraph isomorphic to K_k

• Independence number $\alpha(G)$: Largest k s.t. G has a set of k nodes with no edges among them Nodes of each colour corresponds to an independent set so at most $\alpha(G)$ nodes • Consider a colouring of G with $\chi(G)$ colours. • n = \sum_c #nodes with colour c $\leq \chi(G) \cdot \alpha(G)$ $\propto \chi(G) \geq n/\alpha(G)$ $\odot \chi(G) \leq \Delta(G)+1$

Proof describes a for colouring with \triangle (G)+1 colours

for colouring with olouring and Degree all graphs, $\chi(G) \leq \Delta(G) + 1$ Fact: among connected graphs,

equality holds only for K_n and C_{2n+1} Proof by induction on the number of nodes, n Base case: n=1. 3 There is only one such graph, for which $\Delta(G)=0$, $\chi(G)=1$ Induction step: For all integers k≥1: Induction hypothesis: for all G=(V,E) with |V|=k, $\chi(G) \leq \Delta(G)+1$ To prove: for all graphs G=(V,E) with |V|=k+1, $\chi(G) \leq \Delta(G)+1$. • Let G=(V,E) be an <u>arbitrary graph</u> with |V|=k+1. \triangleleft Important! Let G'=(V',E') be obtained from G by removing some v∈V (i.e., $V'=V-\{v\}$) and all edges incident on it IV' |= k. So $\chi(G') \leq \Delta(G')+1 \leq \Delta(G)+1$. Colour G' with $\Delta(G)+1$ colours.

 deg(v) ≤ Δ (G). So colour v with a colour in {1,.., Δ (G)+1} that does
 not appear in its neighbourhood. Valid colouring. So $\chi(G) \leq \Delta(G) + 1$.

in action Graph Colouring in Action

Graphs

- Many problems can be modeled as a graph colouring problem
- Resource scheduling: allocate "resources" (e.g. time slots, radio frequencies) to "demands" (exams, radio stations) so that there are no "conflicts." Use as few resources as possible.
 - Oreate a "conflict graph": Demands are the nodes; connect them by an edge if they have a conflict (same student, inhabited area with signal overlap)
 - Colour the graph with as few colours as possible
 - Allocate one resource per colour. Then, no two demands satisfied by the same resource have a conflict