-

Graphs

Graph Colouring



@ Recall bi-partite graphs

@ We can “colour” the nodes using 2 colours (which part they are
in) so that no edge between nodes of the same colour

@ More generally, a colouring (using k colours) is proper if there is
no edge between nodes of the same colour

@ k-colouring: a function ¢ : V — {1,.. k} s.t.
vx,yeV {x,y} € E — c(x)#c(y)

@ The least number of colours possible in a proper colouring of G
is called the Chromatic number of G, gj\

Colouring is
Upper-bounding x(G)

@ G has a k-colouring & #(G) < k

® G has no k-1-colouring & #(G) 2 k



Graph Colouring

@ Suppose H is a subgraph of G. Then:

@ G has a k-colouring — H has a k-colouring

ad i.e., )((G) > )((H) <[ Lower-bounding x(G) J
@ e.g., G has K, as a subgraph — x(G) > n-1 (i.e., y(G) 2 n)

@ e.g., G has Cn, for odd n as a subgraph — #(G) > 2 (coming up)

@ Summary: One way to show Kiower £ 7(G) £ Kupper

Show a colouring c:V— {l,... Kupper}
And show a subgraph H with Kiower ¢ y(H)

@ Isomorphism preserves y (exercise)



Graph Colouring

@ The origins: map-making

® "Graph”: one node for each country; an edge between
countries which share a border

@ Neighbouring countries shouldnt have the same colour. Use as
few colours as possible.

@ Efficient algorithms known for colouring many special kinds of
graphs with as few colours as possible

@ But computing chromatic number in general is believed to be
“hard” (it is NP-hard)



Bi-partite Graph

® Claim: for all integers n21, Czny is not bi-partite

® Base case: n=1. C3 has chromatic number 3. v/
2k-2

@ Induction step: For all integers k > 2 :

Induction hypothesis: Cak-1 is not bi-partite (corresponds to n=k-1)
To prove: Ca.1 is not bi-partite (corresponds to n=k)

@ Will prove contrapositive: Ca.1 bi-partite — Cak-1 bi-partite

Suppose a proper 2-colouring c:10,..,2k} — {1,2} of Cak1.

Then, c(0) # c(2k) # c(2k-1) # c(2k-2). i.e., c(0)=c(2k-1)£c(2k-2).
Only edge in Ca-1 not in Caky is {0,2k-2}.

So ¢ respects all edges of Cu-1.

So ¢':{0,..,2k-2} — 41,2} with c’(u)=c(u) a proper colouring of Cak-i.

@ @ @ @ ©
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When G has no odd
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cycle, this gives a
2-colouring
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Bi-partite Graph

@ Theorem: G (with |V[>1) is bipartite iff it contains no odd cycle

@ Tp prove: If G not bipartite then it has an odd cycle

G (IVI>1) not bipartite = some such connected component

@ Fix v in this component and partition its nodes as  Q
A = §{ x | dist(x,v) is even }, B = { x | dist(x,v) is odd }

@ Not bipartite = 3 edge e=1x,y} where x,yeA or X,yeB

® W.lLo.g shortest paths from v to x,y are of the form P||Q and 4
PlIR where Q, R are paths from u to x,y and intersect only at u
@ Q and R are both even or both odd length

@ Cycle QllelIRrev is an odd cycle



Complete Graph

® Suppose G has n nodes. Then, ¥(G)=n < G is isomorphic to K,

@ <—: Cannot colour K, with < n colours (by pigeonhole principle,
two nodes with same colour!), and so y(K.) = n.

@ —: We will prove the contrapositive: i.e., that if G with n
nodes is not isomorphic to Kn, then y(G)#n.

@ Suppose G=(V,E) is not isomorphic to Ky
= 3 distinct uv € V s.t. fu,v} ¢ E

= A proper colouring which assigns the same colour fo

both u and v, and |V|-2 other colours to other nodes
= x(G) < |V|-1



Cliques and Independent Sets

@ Clique number «(G) : Largest k s.t. G has a subgraph
isomorphic to Kk

o /(G) 2 w(G)

@ Independence number «(G) : Largest k s.t. G has a set of k
nodes with no edges among them

@ Nodes of each colour corresponds to an independent set —
so at most «(G) nodes

@ Consider a colouring of G with y(G) colours.
@ n = > #nodes with colour ¢ ¢ y(G):-«(G)
o ¥(G) 2 n/u(G)

a 7(G) ¢ A(G)+1
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Proof describes a

recursive algorithm DIO uri n g a n d Deq ree

for colouring with

A(G)+1 colours L < Fact: among connected graphs,
y all gl"ClphS, )((G) i A(G)+l equality holds only for K, and Cznn

a||Proof by induction on the number of nodes, n

@||Base case: n=l.

There is only one such graph, for which A(G)=0, x(G)=1

@|Induction step: For all integers k2l:
Induction hypothesis: for all G=(V,E) with |[VI=k, A(G) < A(G)+]
To prove: for all graphs G=(V,E) with [VI=k+l, x(G) < A(G)+1.

o Let G=(V,E) be an arbitrary graph with [VI=k+l. =< Important!

@ Let G'=(V',E’) be obtained from G by removing some veV (i.e.,
V'=V-{v}) and all edges incident on it

a |V'I=k. So AG') < A(G)+1 < A(G)+1. Colour G’ with A(G)+1
colours.

@ deg(v) < A(G). So colour v with a colour in 11,..,A(G)+1} that does
not appear in its neighbourhood. Valid colouring.
So y(G)<A(G)+1.




“Graph Colouring in Action

@ Many problems can be modeled as a graph colouring problem

@ Resource scheduling: allocate “"resources” (e.g. time slots, radio
frequencies) to "demands” (exams, radio stations) so that there are
no “conflicts” Use as few resources as possible.

@ Create a “conflict graph”: Demands are the nodes; connect
them by an edge if they have a conflict (same student,
inhabited area with signal overlap)

@ Colour the graph with as few colours as possible

@ Allocate one resource per colour. Then, no two demands
satisfied by the same resource have a conflict



