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Graph Colouring

Recall bi-partite graphs


We can “colour” the nodes using 2 colours (which part they are 
in) so that no edge between nodes of the same colour


More generally, a colouring (using k colours) is proper if there is 
no edge between nodes of the same colour


k-colouring: a function c : V → {1,..,k} s.t.  
                ∀x,y∈V  {x,y} ∈ E → c(x)≠c(y)


The least number of colours possible in a proper colouring of G 

is called the Chromatic number of G, 𝜒(G)


G has a k-colouring ↔ 𝜒(G) ≤ k


G has no k-1-colouring ↔ 𝜒(G) ≥ k

Colouring is  
Upper-bounding 𝜒(G)



Graph Colouring
Suppose H is a subgraph of G. Then:


G has a k-colouring → H has a k-colouring 


i.e., 𝜒(G) ≥ 𝜒(H)


e.g., G has Kn as a subgraph → 𝜒(G) > n-1 (i.e., 𝜒(G) ≥ n )


e.g., G has Cn for odd n as a subgraph → 𝜒(G) > 2 (coming up)


Summary: One way to show klower ≤ 𝜒(G) ≤ kupper 

     Show a colouring c:V→ {1,...,kupper} 
     And show a subgraph H with klower ≤ 𝜒(H)


Isomorphism preserves 𝜒 (exercise)

Lower-bounding 𝜒(G)



Graph Colouring
The origins: map-making


“Graph”: one node for each country; an edge between 
countries which share a border


Neighbouring countries shouldn’t have the same colour. Use as 
few colours as possible.


Efficient algorithms known for colouring many special kinds of 
graphs with as few colours as possible


But computing chromatic number in general is believed to be 
“hard” (it is NP-hard)



Bi-partite Graph
Claim: for all integers n≥1, C2n+1 is not bi-partite


Base case: n=1. C3 has chromatic number 3. ✔


Induction step: For all integers k ≥ 2 : 
Induction hypothesis:  C2k-1 is not bi-partite  (corresponds to n=k-1) 
To prove: C2k+1 is not bi-partite (corresponds to n=k)


Will prove contrapositive: C2k+1 bi-partite → C2k-1 bi-partite


Suppose a proper 2-colouring c:{0,..,2k} → {1,2} of C2k+1. 

Then, c(0) ≠ c(2k) ≠ c(2k-1) ≠ c(2k-2). i.e., c(0)=c(2k-1)≠c(2k-2).

Only edge in C2k-1 not in C2k+1 is {0,2k-2}. 

So c respects all edges of C2k-1. 

So c’:{0,..,2k-2} → {1,2} with c’(u)=c(u) a proper colouring of C2k-1.

0

2k

2k-1

2k-2

C2k+1



Theorem: G (with |V|>1) is bipartite iff it contains no odd cycle


To prove: If G not bipartite then it has an odd cycle


G (|V|>1) not bipartite ⇒ some such connected component


Fix v in this component and partition its nodes as 
A = { x | dist(x,v) is even }, B = { x | dist(x,v) is odd }


Not bipartite ⇒ ∃ edge e={x,y} where x,y∈A or x,y∈B


W.l.o.g shortest paths from v to x,y are of the form P||Q and  
P||R where Q, R are paths from u to x,y and intersect only at u 


Q and R are both even or both odd length


Cycle Q||e||Rrev is an odd cycle

When G has no odd 
cycle, this gives a 

2-colouring
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Complete Graph
Suppose G has n nodes. Then, 𝜒(G)=n ↔ G is isomorphic to Kn


←: Cannot colour Kn with < n colours (by pigeonhole principle, 
two nodes with same colour!), and so 𝜒(Kn) = n.


→: We will prove the contrapositive: i.e., that if G with n 
nodes is not isomorphic to Kn, then 𝜒(G)≠n.


Suppose G=(V,E) is not isomorphic to K|V|  
 ⇒ ∃ distinct u,v ∈ V s.t. {u,v} ∉ E 

 ⇒ A proper colouring which assigns the same colour to   

    both u and v, and |V|-2 other colours to other nodes 
 ⇒ 𝜒(G) ≤ |V|-1



Cliques and Independent Sets
Clique number ω(G) : Largest k s.t. G has a subgraph 
isomorphic to Kk 


𝜒(G) ≥ ω(G)


Independence number α(G) : Largest k s.t. G has a set of k 
nodes with no edges among them


Nodes of each colour corresponds to an independent set — 
so at most α(G) nodes


Consider a colouring of G with 𝜒(G) colours.


n = Σc #nodes with colour c ≤ 𝜒(G)·α(G)


𝜒(G) ≥ n/α(G)


𝜒(G) ≤ Δ(G)+1



Colouring and Degree

Base case: n=1. 
   There is only one such graph, for which Δ(G)=0, 𝜒(G)=1

Induction step: For all integers k≥1: 
   Induction hypothesis:  for all G=(V,E) with |V|=k, 𝜒(G) ≤ Δ(G)+1 
   To prove: for all graphs G=(V,E) with |V|=k+1, 𝜒(G) ≤ Δ(G)+1.


Let G=(V,E) be an arbitrary graph with |V|=k+1.

Let G’=(V’,E’) be obtained from G by removing some v∈V (i.e., 
V’=V-{v}) and all edges incident on it

|V’|=k. So 𝜒(G’) ≤ Δ(G’)+1 ≤ Δ(G)+1. Colour G’ with Δ(G)+1 
colours.

deg(v) ≤ Δ(G). So colour v with a colour in {1,..,Δ(G)+1} that does 
not appear in its neighbourhood. Valid colouring.  
So 𝜒(G)≤Δ(G)+1.

Claim: For all graphs, 𝜒(G) ≤ Δ(G)+1

Proof describes a 
recursive algorithm 
for colouring with 
Δ(G)+1 colours

Important!

Proof by induction on the number of nodes, n

Fact: among connected graphs, 
equality holds only for Kn and C2n+1 



Graph Colouring in Action
Many problems can be modeled as a graph colouring problem


Resource scheduling: allocate “resources” (e.g. time slots, radio 
frequencies) to “demands” (exams, radio stations) so that there are 
no “conflicts.” Use as few resources as possible.


Create a “conflict graph”: Demands are the nodes; connect 
them by an edge if they have a conflict (same student, 
inhabited area with signal overlap)


Colour the graph with as few colours as possible


Allocate one resource per colour. Then, no two demands 
satisfied by the same resource have a conflict
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