Graphs

More Examples

More Examples

Examples

- Complete graph K_n : n nodes, with all possible edges between them $\varnothing E = \{ \{a, b\} \mid a, b \in V, a \neq b \}$ # edges, |E| = n(n-1)/2
- Cycle C_n : V = { $v_1, ..., v_n$ }, E = { { v_i, v_j } | j=i+1 or (i=1 and j=n) }
- Sipartite graph : V = V₁ ∪ V₂, where V₁ ∩ V₂ = Ø (i.e., a partition), and no edge between two nodes in the same "part": $E \subseteq \{ \{a,b\} \mid a \in V_1, b \in V_2 \}$

e.g., C_n where n is even

Complete bipartite graph Kn1,n2 : Bipartite graph, with |V1|=n1, |V2|=n2 and $E = \{ \{a, b\} \mid a \in V_1, b \in V_2 \}$ # edges, |E| = n₁ · n₂

Later: Hypercube, Trees

More Examples

Path graph P_n:
 V = {1,...,n} and E = { {i,i+1} | i∈[n-1] }

Wheel graph W_n (n≥3):
V = {hub} ∪ Z_n and
E = { {hub, x} | x∈ Z_n} ∪ { {x,x+1} | x∈ Z_n}

So Ladder graph L_n: V = {0,1}×{1,...,n},
E = { {(0,i),(1,i)} | i∈[n] } ∪ { {(b,i),(b,i+1) | b∈{0,1}, i∈[n-1] }

Circular Ladder graph CL_n:
 2 additional edges {(b,n),(b,1)}

Hypercubes

The hypercube graph Q_n

- Nodes: all n-bit strings. e.g., {000, 001, 010, 011, 100, 101, 110, 111}
- Edges: x and y connected iff they differ in exactly one position
 - I.e., x & y neighbours if toggling a single bit changes x to y
- \circ e.g.: $Q_0 \circ Q_1 \circ Q_1$

2ⁿ nodes, but "diameter" (longest shortest path) is only n

Q_n is an n-regular bi-partite graph

The two parts: nodes labeled with strings which have <u>even</u> parity (even# 1s) and those labeled with strings of <u>odd parity</u> (odd# 1s)

Kneser Graph

Instead of bit strings, nodes in Q_n can be taken as subsets of [n], with edges present between sets which differ in a single element

Graph KG_{n,k} has nodes at the kth level in Q_n: i.e., subsets of size k

- ø Edge between subsets which intersect
- A clique in KG_{n,k}: a set of subsets which intersect pairwise.
 E.g., { {n} ∪ S | S ⊆ [n-1], |S|=k-1 }, has C(n-1,k-1) nodes
 Erdős-Ko-Rado Theorem: If k≤n/2, then no larger cliques

Kneser Graph KG_{n,k}: Same as above, but with edges between subsets which are disjoint

Graph Operations

Complement: Interchange edges and non-edges

 \odot Given G = (V,E), \overline{G} = (V, \overline{E})

Olion, Intersection, Difference, Symmetric difference:

G₁ = (V,E₁), G₂ = (V,E₂), G₁ op G₂ = (V, E₁ op E₂)

Output Union and intersection can also be defined for G₁ = (V₁,E₁), G₂ = (V₂,E₂) as G₁ op G₂ = (V₁ op V₂, E₁ op E₂)
Disjoint union: Union when V₁ ∩ V₂ = Ø

Powering

Given G = (V,E), the square of G, G² = (V,E') where
 E' = E ∪ { {x,y} | ∃w {x,w}, {w,y} ∈ E }

 Ø More generally, G^k has an edge {x,y} iff G has a path of length t ∈ [k] between x and y

Graph Operations

Cross product

If G₁ = (V₁,E₁), G₂ = (V₂,E₂), then G₁×G₂ = (V₁×V₂,E), where $\{(u_1,u_2),(v_1,v_2)\} \in E$ iff $\{u_1,v_1\} \in E_1$ and $\{u_2,v_2\} \in E_2$

ø e.g., G×K₂ is a bipartite graph

Box product

G₁□G₂ = (V₁×V₂,E), where {(u₁,u₂),(v₁,v₂)} ∈ E iff
 ({u₁,v₁} ∈ E₁ and u₂=v₂) or (u₁=v₁ and {u₂,v₂} ∈ E₂)

@ e.g., $Q_m \square Q_n = Q_{m+n}$

e.g., Hamming graph (yields hypercubes for q=2)

Vertex set: [q] × ··· × [q] (n copies). Edge between (u₁,...,u_n) and (v₁,...,v_n) s.t. u_i=v_i for all but one coordinate.

