

Matchings

A matching in a graph G=(V,E) is a set of edges which do not share any vertex

i.e., a set M ⊆ E s.t. $\forall e_1, e_2 \in M$, $e_1 \neq e_2 \rightarrow e_1 \cap e_2 = \emptyset$

Severy node gets "matched" with at most one other node

Trivial matchings: Ø is a valid matching. For any e∈E, {e} is a valid matching, too.

A perfect matching: All nodes are matched by M.

ø i.e., a matching M s.t. $\forall v \in V$, ∃ e∈M s.t. $v \in e$

May or may not exist

Algorithmic task: given a graph find a largest (maximum) matching
 Efficient algorithms do exist (we will not cover them here)

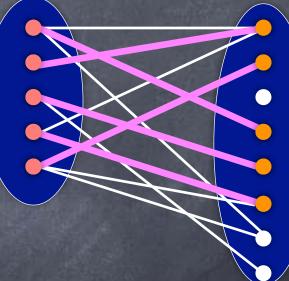
Matchings in Bipartite Graphs

Denote by G=(X,Y,E) a bipartite graph (X∪Y,E) where X,Y≠Ø, X∩Y=Ø and, ∀e∈E, |e∩X|=|e∩Y|=1

Given bipartite G=(X,Y,E),
 a complete matching from X to Y is
 a matching M s.t. |M|=|X|

If |X|=|Y|, a complete matching from X to Y is also a complete matching from Y to X

And is a perfect matching



in action Graph Matching in Action

Matching in bipartite graphs

Graphs

Assigning tasks to workers: a {worker, task} edge if the worker is qualified for the task. A worker should be assigned only one task, and each task needs only one worker.

Maximum matching: Getting most tasks assigned to workers

Advertisements and slots (e.g., on webpages): each advertiser specifies which slots they prefer; the goal is to maximise the number of slots filled

Additional issues: weights (maximum weight matching), costs (e.g., minimum cost perfect matching), "online matching"

Shrinking Neighbourhood

• Given a graph G = (V,E), and $v \in V$, we define v's neighbourhood: More generally, neighbourhood of a set $S \subseteq V$: $T(S) \triangleq U_{v \in S} \Gamma(\{v\})$ \odot We shall say S is shrinking if $|\Gamma(S)| < |S|$ More generally, for B ⊆ Y, S shrinking in B if $|\Gamma(S) \cap B| < |S|$ I.e., the set of neighbours of S in B is smaller than S

 Bipartite graph G=(X,Y,E) has a complete matching from X to Y iff no subset of X is shrinking

 i.e., "no shrinking subset" is a necessary and sufficient condition for a complete matching to exist

Easy direction: Necessary

I.e., If there is a complete matching from X to Y, then $\forall S \subseteq X$, S is not shrinking in Y [Why?]

Proof of sufficiency: Coming up

- Claim: No shrinking $S \subseteq X \rightarrow \exists$ a complete matching from X into Y
- Proof by strong induction on |X|.
- Base case, |X|=1: ✓ (How?)
- Induction step: Suppose claim holds for graphs with |X| ≤ k.
 - Given graph (X,Y,E) with |X|=k+1, s.t. $\forall U \subseteq X$, $|\Gamma(U)| \ge |U|$
 - Pick an arbitrary x∈X, and an arbitrary neighbour y of x (since {x} is not shrinking, x has a neighbour).
 - Case 1: There is a complete matching from X-{x} to Y-{y}. Then, X has a complete matching into Y
 Case 2: No complete matching from X-{x} to Y-{y}.

 Given graph (X,Y,E) with |X|=k+1, s.t. $\forall U \subseteq X$, $|\Gamma(U)| \ge |U|$ • Case 2: No complete matching from $X = \{x\}$ to $Y = \{y\}$. By ind. hyp., ∃ S ⊆ X-{x} s.t. S is shrinking in Y-{y} • S shrinking in Y-{y} but not in Y. So, $|\Gamma(S)|=|S|$ Claim: \exists a complete matching from S into $\Gamma(S)$ $[S] \leq k$, and no subset of S is shrinking. So by ind. hyp. \exists a complete matching of S into Y. This must be into $\Gamma(S)$ O Claim: ∃ a complete matching from X-S into Y-I[†](S)
 IX-S|≤k. By ind. hyp., enough to show $\forall T \subseteq X - S$, $|\Gamma(T) - \Gamma(S)| \ge |T|$ Onsider U=T∪S. $|\Gamma(U)| \ge |U| = |T|+|S|.$ Then $|\Gamma(T) - \Gamma(S)| = |\Gamma(U) - \Gamma(S)| = |\Gamma(U)| - |\Gamma(S)| ≥ |T|$ Hence \exists a complete matching from X into Y

- Claim: No shrinking $S \subseteq X \rightarrow \exists$ a complete matching from X into Y
- Proof by strong induction on |X|.
- Base case, |X|=1: ✓ (How?)
- Induction step: Suppose claim holds for graphs with |X| ≤ k.
 - Given graph (X,Y,E) with |X|=k+1, s.t. $\forall U \subseteq X$, $|\Gamma(U)| \ge |U|$
 - Pick an arbitrary x∈X, and an arbitrary neighbour y of x (since {x} is not shrinking, x has a neighbour).
 - Case 1: There is a complete matching from X-{x} to Y-{y}. Then, X has a complete matching into Y

Hall's Theorem Example Application

Claim: The edge set of any bipartite graph in which all the nodes have the same degree d can be partitioned into d matchings
 Note that such a graph G=(X,Y,E) would have |X|=|Y|=|E|/d.
 Proof by induction on d.

Given a bipartite graph G=(X,Y,E) of degree d=k+1. Enough to find one perfect matching M in G.

After removing it, will be left with a bipartite graph with degree k for all nodes, and then can use ind. hyp.

 \varnothing Find a perfect matching: Enough to show that no S \subseteq X is shrinking

Is a description of a second secon