
Graphs
Dilworth’s Theorem



Recall:


In a graph, size of any matching ≤ size of any vertex cover


In bipartite graphs, equality achieved! Kőnig’s theorem


In a poset, size of any chain ≤ size of any anti-chain decomp


Equality is achieved! Mirsky’s theorem


Today:


In a poset, size of any anti-chain ≤ size of any chain decomp


Equality is achieved! Dilworth’s theorem

Min-Max Results

Each chain can have at 
most one element of an 

anti-chain.
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Dilworth’s Theorem: The least number of chains needed 
to partition S is exactly the size of a largest anti-chain

Easy direction: size of any anti-chain ≤ size of any chain decomp


To prove: There is an anti-chain at least as large as a chain 
decomposition


Consider a poset (S,≼), with |S|=n


Construct a bipartite graph G s.t. 


a vertex cover of size ≤ t in G ⇒ antichain of size ≥ n-t


a matching of size ≥ t in G ⇒ partition S into ≤ n-t chains


Kőnig’s theorem: there is a vertex cover and matching of the 
same size, say t, in G


Hence an antichain at least as large as a chain decomposition

Dilworth’s Theorem



Given vertex cover C, let B = { u |∃b∈{0,1}, (u,b) ∈ C }. Let A=S-B.


|B| ≤ |C| ⇒ |A| ≥ |S|-|C|


Also, A is an anti-chain 
[ If u,v∈A, and u≼v, then (u,0) and (v,1) ∉ C, and edge {(u,0),(v,1)} ∈ E ! ]

Dilworth’s Theorem
Let G = (S×{0}, S×{1}, E), where E = { {(u,0),(v,1)} | u≼v, u≠v }
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C={(d,0),(a,1)} 
B = {a,d} 
A = {b,c}



Given a matching M, define a graph F=(S,E*), where  
E*={ {u,v} | {(u,0),(v,1)} ∈ M }. 


F is a forest, with each connected component being a path


In F, any u will have degree ≤ 2 [one from (u,0), one from (u,1)] 

F has no cycles [Cycle v0,v1,…,vk ⇒ v0 ≼ v1 ≼ .. ≼ v0 ! ]


Each such path in F forms a chain in the poset


Number of chains = number of connected components  
                      = |S| - |E*| = |S|-|M|

Dilworth’s Theorem
Let G = (S×{0}, S×{1}, E), where E = { {(u,0),(v,1)} | u≼v, u≠v }
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Dilworth’s Theorem: The least number of chains needed 
to partition S is exactly the size of a largest anti-chain

Easy direction: size of any anti-chain ≤ size of any chain decomp


To prove: There is an anti-chain at least as large as a chain 
decomposition


Consider a poset (S,≼), with |S|=n


Construct a bipartite graph G s.t. 


a vertex cover of size ≤ t in G ⇒ antichain of size ≥ n-t


a matching of size ≥ t in G ⇒ partition S into ≤ n-t chains


Kőnig’s theorem: there is a vertex cover and matching of the 
same size, say t, in G


Hence an antichain at least as large as a chain decomposition

Dilworth’s Theorem

✓



Mirsky’s theorem and Dilworth’s theorem can be seen as 
statements about the comparison graph of the poset


Given a poset (S,≼), its comparison graph is G=(S,E)  
where E = { {u,v} | u≼v, u≠v } 
 

A chain corresponds to a clique in G, and an anti-chain 
corresponds to an independent set (i.e., a clique in )


An anti-chain decomposition corresponds to a colouring of G, and 
a chain decomposition corresponds to a colouring of 

G

G

Comparison Graph

Mirsky’s theorem: If G is a comparison graph, χ(G) = ω(G) 

Dilworth’s theorem: If G is a comparison graph, χ( ) = ω( )G G

If G is a comparison graph, any induced subgraph of G is also a 
comparison graph



Perfect Graph: G is a perfect graph if for every induced 
subgraph G’ of G,  χ(G’) = ω(G’)


Mirsky: A comparison graph is perfect 
Dilworth: The complement of a comparison graph is perfect


Fact [Perfect Graph Theorem]: G is perfect iff  is perfect


Note: Given Perfect Graph Theorem, Mirsky ⇔ Dilworth

G

Comparison Graph

If G is a comparison graph, any induced subgraph of G is also a 
comparison graph

Mirsky’s theorem: If G is a comparison graph, χ(G) = ω(G) 

Dilworth’s theorem: If G is a comparison graph, χ( ) = ω( )G G


