Graphs

Dilworth's Theorem

=



Min-Max Results

matching sizes possible vertex cover sizes possible
€ >

0] n

@ Recall:
@ In a graph, size of any matching < size of any vertex cover
@ In bipartite graphs, equality achieved! Kénigs theorem

@ In a posef, size of any chain < size of any anti-chain decomp

most one element of an
anti-chain.

@ Equality is achieved! Mirskys theorem (" each chain can have at
@ Today:

@ In a poset, size of any anti-chain < size of any chain decomp

® Equality is achieved! Dilworths theorem



Dilworths Theorem

@ Dilworths Theorem: The least number of chains needed
to partition S is exactly the size of a largest anti-chain

@ Easy direction: size of any anti-chain < size of any chain decomp

@ To prove: There is an anti-chain at least as large as a chain
decomposition

@ Consider a poset (S,x), with |S|=n
@ Construct a bipartite graph G s.T.

@ a vertex cover of size < t in G = antichain of size > n-t

@ a matching of size > t in G = partition S into < n-t chains

@ Konigs theorem: there is a vertex cover and matching of the
same size, say t, in G

@ Hence an antichain at least as large as a chain decomposition



Dilworths Theorem

@ Let G = (Sx{0}, Sx{1}, E), where E = { {(u,0),(v,1)} | uxv, u#v }

C={(d,0).(a,1)}
B = {a,d}
A = {b,c}

@ Given vertex cover C, let B ={u |3be{0,1}, (u,b) € C }. Let A=S-B.
a |B|l < ICl = |Al > |S]-IC]

® Also, A is an anti-chain
[ If uveA, and uxy, then (u,0) and (v1) ¢ C, and edge {(u,0),(v1)} € E ! ]



Dilworths Theorem

@ Let G = (Sx{0}, Sx{1}, E), where E = { {(u,0),(v,1)} | uxv, u#v }

@ Given a matching M, define a graph F=(S,E*), where
E*={ {uv} | {(u,0).(v1)} € M }.

@ F is a forest, with each connected component being a path

@ In F, any u will have degree < 2 [one from (u,0), one from (u,1)]
® F has no cycles [Cycle vo,vi,....vk = Vo < Vi < . < vp ! ]

@ Each such path in F forms a chain in the poset

@ Number of chains = number of connected components
= ISl - |E*] = |S]-IMI



Dilworths Theorem

@ Dilworths Theorem: The least number of chains needed
to partition S is exactly the size of a largest anti-chain

@ Easy direction: size of any anti-chain < size of any chain decomp

@ To prove: There is an anti-chain at least as large as a chain
decomposition

@ Consider a poset (S,x), with |S|=n
& Construct a bipartite graph G s.t.

@ a vertex cover of size < t in G = antichain of size > n-t

@ a matching of size > t in G = partition S into < n-t chains

@ Konigs theorem: there is a vertex cover and matching of the
same size, say t, in G

@ Hence an antichain at least as large as a chain decomposition



Comparison Graph

@ Mirsky's theorem and Dilworths theorem can be seen as
statements about the comparison graph of the poset

@ Given a poset (S,x), its comparison graph is G=(S,E)
where E = § {u,v} | usv, uzv }

@ If G is a comparison graph, any induced subgraph of G is also a
comparison graph

@ A chain corresponds to a clique in G, and an anti-chain
corresponds to an independent set (i.e., a clique in G)

@ An anti-chain decomposition corresponds fo a colouring of G, and
a chain decomposition corresponds to a colouring of G

® Mirskys theorem: If G is a comparison graph, ¥(G) = w(G)
Dilworths theorem: If G is a comparison graph, y(G) = «(G)



Comparison Graph

@ Mirsky's theorem: If G is a comparison graph, ¥(G) = »(G)
Dilworth's theorem: If G is a comparison graph, ¥(G) = «(G)

@ If G is a comparison graph, any induced subgraph of G is also a
comparison graph

@ Perfect Graph: G is a perfect graph if for every induced
subgraph G’ of G, %(G') = w(G)

@ Mirsky: A comparison graph is perfect
Dilworth: The complement of a comparison graph is perfect

® Fact [Perfect Graph Theorem]: G is perfect iff G is perfect

@ Note: Given Perfect Graph Theorem, Mirsky < Dilworth



