
Recursive Definitions
And Applications to Counting

 n k 0 1 2 3 4 5 6

0 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0

2 1 2 1 0 0 0 0

3 1 3 3 1 0 0 0

4 1 4 6 4 1 0 0

5 1 5 10 10 5 1 0

6 1 6 15 20 15 6 1

C(n,k) = C(n-1,k-1) + C(n-1,k) (where n,k ≥ 1)

Easy derivation: Let |S|=n and a ∈ S.

C(n,k) = # k-sized subsets of S containing a
 + # k-sized subsets of S not containing a

In fact, gives a recursive definition
of C(n,k)

Base case (to define for k≤n):
C(n,0) = C(n,n) = 1 for all n∈N

Or, to define it for all (n,k)∈N×N

Base case: C(n,0)=1, for all n∈N,

and C(0,k)=0 for all k∈Z+

C(n,k)

Tower of Hanoi

Move entire stack of disks to another peg

Move one from the top of one stack to the top of another

A disk cannot be placed on top of a smaller disk

How many moves needed?

Optimal number not known when 4 pegs and over ≈30 disks!

Optimal solution known for 3 pegs (and any number of disks)

http://en.wikipedia.org/wiki/Tower_of_Hanoi

Tower of Hanoi

Recursive algorithm (optimal for 3 pegs)

Transfer(n,A,C):
 If n=1, move the single disk from peg A to peg C
 Else
 Transfer(n-1,A,B) (leaving the largest disk out of play)
 Move largest disk to peg C
 Transfer(n-1,B,C) (leaving the largest disk out of play)

http://en.wikipedia.org/wiki/Tower_of_Hanoi

Tower of Hanoi
Recursive algorithm (optimal for 3 pegs)

Transfer(n,A,C):
 If n=1, move the single disk from peg A to peg C
 Else
 Transfer(n-1,A,B) (leaving the largest disk out of play)
 Move largest disk to peg C
 Transfer(n-1,B,C) (leaving the largest disk out of play)

How many moves are made by this algorithm?

M(n) be the number of moves made by the above algorithm

M(n) = 2M(n-1) + 1 with M(1) = 1

1, 3, 7, 15, 31, …

Recursive Definitions
E.g., f(0) = 1
 f(n) = n⋅f(n-1) ∀n∈Z s.t. n>0

f(n) = n ⋅ (n-1) ⋅ ... ⋅ 1 ⋅ 1 = n!

This is the formal definition of n!

Translates to a program to compute factorial:

factorial(n ∈ N) {  

 if (n==0) return 1;  

 else return n*factorial(n-1);  

}

Initial Condition

factorial(n ∈ N) {  

 F[0] = 1;  

 for i in 1..n  

 F[i] = i*F[i-1];  

 return F[n];  

}

Recurrence relation

How many paths are there in the grid from (0,0) to (n,n) without ever
crossing over to the y>x region?

Any path can be constructed as follows

Pick minimum k>0 s.t. (k,k) reached

(0,0) → (1,0) ➾ (k,k-1) → (k,k) ➾ (n,n)
where ➾ denotes a Catalan path

Cat(n) = Σk=1 to n Cat(k-1)⋅Cat(n-k)

Cat(0) = 1

1, 1, 2, 5, 14, 42, 132, …

Catalan Numbers

e.g., 42 = 1·14 + 1·5 + 2·2 + 5·1 + 14· 1 Closed form expression? Later

Fibonacci Sequence

F(0) = 0
F(1) = 1
F(n) = F(n-1) + F(n-2) ∀n ≥ 2

F(n) is the nth Fibonacci number
(starting with 0th)

8

1 1

23

5

13

Closed form expression? Coming up

Counting Strings

How many ternary strings of length n which don’t have “00”
as a substring?

Set up a recurrence

A(n) = # such strings starting with 0

B(n) = # such strings not starting with 0

A(n) = B(n-1) . B(n) = 2(A(n-1) + B(n-1)). [Why?]

Initial condition: A(0) = 0; B(0) = 1 (empty string)

Required count: A(n) + B(n)

Can rewrite in terms of just B

B(0) = 1. B(1) = 2. B(n) = 2B(n-1) + 2B(n-2) ∀n ≥ 2

Required count: B(n-1) + B(n).

Recursion & Induction
Claim: F(3n) is even, where F(n) is the nth Fibonacci number, ∀n≥0

Proof by induction:

Base case:
n=0: F(3n) = F(0) = 0 ✔ n=1: F(3n) = F(3) = 2 ✔

Induction step: for all k≥2
 Induction hypothesis: suppose for 0≤n≤k-1, F(3n) is even
 To prove: F(3k) is even

F(3k) = F(3k-1) + F(3k-2) = ?

Unroll further: F(3k-1) = F(3k-2) + F(3k-3)
F(3k) = 2⋅F(3k-2) + F(3(k-1)) = even, by induction hypothesis

0 1 1 2 3 5 8 13 21 34…
Stronger claim (but easier to prove by induction):
F(n) is even iff n is a multiple of 3

Closed Form
Sometimes possible to get a “closed form” expression for a
quantity defined recursively (in terms of simpler operations)

e.g., f(0)=0 & f(n) = f(n-1) + n, ∀n>0

f(n) = n(n+1)/2

Sometimes, we just give it a name

e.g., n!, Fibonacci(n), Cat(n)

In fact, formal definitions of integers, addition,
multiplication etc. are recursive

e.g., 0⋅a = 0 & n⋅a = (n-1)⋅a + a, ∀n>0

e.g., 20 = 1 & 2n = 2⋅2n-1

Sometimes both

e.g., Fibonacci(n), Cat(n) have closed forms

Closed Form via Induction
f(0) = c. f(1) = d. f(n) = a⋅f(n-1) + b⋅f(n-2) ∀n≥2.

Suppose X2 - aX - b = 0 has two distinct (possibly complex)
solutions, x and y

Claim: ∃p,q ∀n f(n) = p⋅xn + q⋅yn

Let p=(d-cy)/(x-y), q=(d-cx)/(y-x) so that base cases n=0,1 work

Inductive step: for all k≥2
 Induction hypothesis: ∀n s.t. 1 ≤ n ≤ k-1, f(n) = pxn + qyn

 To prove: f(k) = pxk + qyk

f(k) = a⋅f(k-1) + b⋅f(k-2)
 = a⋅(pxk-1+qyk-1) + b⋅(pxk-2+qyk-2) - pxk - qyk + pxk + qyk
 = - pxk-2(x2-ax-b) - qyk-2(y2-ay-b) + pxk + qyk = pxk + qyk ✓

Exercise:
Fibonacci
numbers

Characteristic equation:

replace f(n) by Xn in the recurrence

f(0) = c. f(1) = d. f(n) = a⋅f(n-1) + b⋅f(n-2) ∀n≥2.

Suppose X2 - aX - b = 0 has only one solution x≠0
i.e., X2 - aX - b = (X-x)2, or equivalently, a=2x, b=-x2

Claim: ∃p,q ∀n f(n) = (p + q⋅n)xn

Let p = c, q = d/x-c so that base cases n=0,1 work

Inductive step: for all k≥2
 Induction hypothesis: ∀n s.t. 1 ≤ n ≤ k-1, f(n) = (p + qn)yn

 To prove: f(k) = (p+qk)xk

f(k) = a⋅f(k-1) + b⋅f(k-2)
 = a (p+qk-q)xk-1 + b⋅(p+qk-2q)xk-2 - (p+qk)xk + (p+qk)xk
 = -(p+qk)xk-2(x2-ax-b) - qxk-2(ax+2b) + (p+qk)xk = (p+qk)xk ✓

Closed Form via Induction

Solving a Recurrence

Often, once a correct guess is made, easy to prove by induction

How does one guess?

Will see a couple of approaches

By unrolling the recurrence into a chain or a “rooted tree”

Using the “method of generating functions”

