
Recursive Definitions 
And Applications to Counting



 n  k 0 1 2 3 4 5 6

0 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0

2 1 2 1 0 0 0 0

3 1 3 3 1 0 0 0

4 1 4 6 4 1 0 0

5 1 5 10 10 5 1 0

6 1 6 15 20 15 6 1

C(n,k) = C(n-1,k-1) + C(n-1,k)  (where n,k ≥ 1)

Easy derivation: Let |S|=n and a ∈ S.  

C(n,k) =  # k-sized subsets of S containing a  
        + # k-sized subsets of S not containing a

In fact, gives a recursive definition 
of C(n,k)

Base case (to define for k≤n): 
C(n,0) = C(n,n) = 1 for all n∈N

Or, to define it for all (n,k)∈N×N  

Base case: C(n,0)=1, for all n∈N,  

and C(0,k)=0 for all k∈Z+

C(n,k)



Tower of Hanoi

Move entire stack of disks to another peg


Move one from the top of one stack to the top of another


A disk cannot be placed on top of a smaller disk


How many moves needed?


Optimal number not known when 4 pegs and over ≈30 disks!


Optimal solution known for 3 pegs (and any number of disks)

http://en.wikipedia.org/wiki/Tower_of_Hanoi



Tower of Hanoi

Recursive algorithm (optimal for 3 pegs)


Transfer(n,A,C): 
  If n=1, move the single disk from peg A to peg C 
  Else 
     Transfer(n-1,A,B) (leaving the largest disk out of play) 
     Move largest disk to peg C 
     Transfer(n-1,B,C) (leaving the largest disk out of play)

http://en.wikipedia.org/wiki/Tower_of_Hanoi



Tower of Hanoi
Recursive algorithm (optimal for 3 pegs)


Transfer(n,A,C): 
  If n=1, move the single disk from peg A to peg C 
  Else 
     Transfer(n-1,A,B) (leaving the largest disk out of play) 
     Move largest disk to peg C 
     Transfer(n-1,B,C) (leaving the largest disk out of play)

How many moves are made by this algorithm?


M(n) be the number of moves made by the above algorithm


M(n) = 2M(n-1) + 1  with M(1) = 1


1, 3, 7, 15, 31, …



Recursive Definitions
E.g.,  f(0) = 1 
       f(n) = n⋅f(n-1)      ∀n∈Z s.t. n>0 


f(n) = n ⋅ (n-1) ⋅ ... ⋅ 1 ⋅ 1 = n!


This is the formal definition of n!


Translates to a program to compute factorial: 
 
factorial(n ∈ N)  {  

   if (n==0) return 1;  

   else return n*factorial(n-1);  

}

Initial Condition

factorial(n ∈ N)  {  

   F[0] = 1;  

   for i in 1..n  

      F[i] = i*F[i-1];  

   return F[n];  

}

Recurrence relation



How many paths are there in the grid from (0,0) to (n,n) without ever 
crossing over to the y>x region?


Any path can be constructed as follows


Pick minimum k>0 s.t. (k,k) reached


(0,0) → (1,0) ➾ (k,k-1) → (k,k) ➾ (n,n)  
where ➾ denotes a Catalan path


Cat(n) = Σk=1 to n Cat(k-1)⋅Cat(n-k)


Cat(0) = 1


1, 1, 2, 5, 14, 42, 132, …

Catalan Numbers

e.g., 42 = 1·14 + 1·5 + 2·2 + 5·1 + 14· 1 Closed form expression? Later



Fibonacci Sequence

F(0) = 0 
F(1)  = 1 
F(n) = F(n-1) + F(n-2)  ∀n ≥ 2


F(n) is the nth Fibonacci number 
(starting with 0th)

8

1 1

23

5

13

Closed form expression? Coming up



Counting Strings

How many ternary strings of length n which don’t have “00” 
as a substring?


Set up a recurrence


A(n) = # such strings starting with 0


B(n) = # such strings not starting with 0


A(n) = B(n-1) .  B(n) = 2(A(n-1) + B(n-1)).   [Why?]


Initial condition:  A(0) = 0; B(0) = 1 (empty string)


Required count: A(n) + B(n)


Can rewrite in terms of just B


B(0) = 1. B(1) = 2.  B(n) = 2B(n-1) + 2B(n-2)   ∀n ≥ 2


Required count: B(n-1) + B(n).



Recursion & Induction
Claim: F(3n) is even, where  F(n) is the nth Fibonacci number, ∀n≥0


Proof by induction:


Base case:   
n=0:  F(3n) = F(0) = 0 ✔   n=1: F(3n) = F(3) = 2 ✔


Induction step: for all k≥2 
 Induction hypothesis: suppose for 0≤n≤k-1, F(3n) is even 
 To prove:  F(3k) is even


F(3k) = F(3k-1) + F(3k-2) = ?


Unroll further: F(3k-1) = F(3k-2) + F(3k-3) 
F(3k) = 2⋅F(3k-2) + F(3(k-1)) = even, by induction hypothesis

0 1 1 2 3 5 8 13 21 34…
Stronger claim (but easier to prove by induction): 
F(n) is even iff n is a multiple of 3



Closed Form
Sometimes possible to get a “closed form” expression for a 
quantity defined recursively (in terms of simpler operations)


e.g.,  f(0)=0  &  f(n) = f(n-1) + n, ∀n>0


f(n) = n(n+1)/2


Sometimes, we just give it a name


e.g., n!, Fibonacci(n), Cat(n)


In fact, formal definitions of integers, addition, 
multiplication etc. are recursive


e.g., 0⋅a = 0  &  n⋅a = (n-1)⋅a + a, ∀n>0


e.g., 20 = 1  & 2n = 2⋅2n-1


Sometimes both


e.g., Fibonacci(n), Cat(n) have closed forms



Closed Form via Induction
f(0) = c.  f(1) = d.  f(n) = a⋅f(n-1) + b⋅f(n-2)   ∀n≥2.


Suppose X2 - aX - b = 0 has two distinct (possibly complex) 
solutions, x and y


Claim:  ∃p,q ∀n f(n) = p⋅xn + q⋅yn 


Let p=(d-cy)/(x-y), q=(d-cx)/(y-x) so that base cases n=0,1 work


Inductive step: for all k≥2 
  Induction hypothesis:  ∀n s.t. 1 ≤ n ≤ k-1,  f(n) = pxn + qyn 

   To prove:  f(k) = pxk + qyk


f(k) = a⋅f(k-1) + b⋅f(k-2)  
     = a⋅(pxk-1+qyk-1)  +  b⋅(pxk-2+qyk-2) - pxk - qyk + pxk + qyk 
     = - pxk-2(x2-ax-b) - qyk-2(y2-ay-b) + pxk + qyk = pxk + qyk  ✓ 

Exercise: 
Fibonacci 
numbers

Characteristic equation:

replace f(n) by Xn in the recurrence



f(0) = c.  f(1) = d.  f(n) = a⋅f(n-1) + b⋅f(n-2)   ∀n≥2.


Suppose X2 - aX - b = 0 has only one solution x≠0 
i.e., X2 - aX - b = (X-x)2, or equivalently, a=2x, b=-x2


Claim:  ∃p,q ∀n f(n) = (p + q⋅n)xn


Let p = c, q = d/x-c  so that base cases n=0,1 work


Inductive step: for all k≥2 
  Induction hypothesis:  ∀n s.t. 1 ≤ n ≤ k-1,  f(n) = (p + qn)yn 

   To prove:  f(k) = (p+qk)xk


f(k) = a⋅f(k-1) + b⋅f(k-2)  
     = a (p+qk-q)xk-1 + b⋅(p+qk-2q)xk-2  - (p+qk)xk + (p+qk)xk 
     = -(p+qk)xk-2(x2-ax-b) - qxk-2(ax+2b) + (p+qk)xk = (p+qk)xk  ✓ 

Closed Form via Induction



Solving a Recurrence

Often, once a correct guess is made, easy to prove by induction


How does one guess?


Will see a couple of approaches


By unrolling the recurrence into a chain or a “rooted tree”


Using the “method of generating functions”


