
Recursive Definitions 
Unrolling Recurrences



Unrolling a recursion

Often helpful to try “unrolling” a recursion to see what 
is happening


e.g., expand into a chain:


T(0) = 0  &  T(n) = T(n-1) + n2   ∀n≥1


T(n-1) = T(n-2) + (n-1)2,  T(n-2) = T(n-3) + (n-2)2, ...


T(n) = n2 + (n-1)2 + (n-2)2 + T(n-3)   ∀n≥3


T(n) = ∑k=1 to n  k2 + T(0)      ∀n≥0



Another example
T(1) =  0  
T(N) = T(⎣N/2⎦) + 1   ∀N≥2


Let us consider N of the form 2n (so we can forget the floor)


T(N) = 1 + T(N/2)  
      = 1 + 1 + T(N/4)  
      = ...  
      = 1 + 1 + ... + T(1)


T(2n) =  n


T(N)  = log2 N  (or simply log N)  for N a power of 2


General N? T monotonically increasing (by strong induction). So, 
T(2⎣log N⎦) ≤ T(N) ≤ T(2⎡log N⎤) : i.e.,  ⎣log N⎦≤ T(N) ≤⎡log N⎤ 


In fact, T(N) =⎣log N⎦ (Exercise)

How many 1’s 
are there?

A slowly 
growing function



Tower of Hanoi
Recursive algorithm (optimal for 3 pegs)


Transfer(n,A,C): 
  If n=1, move the single disk from peg A to peg C 
  Else 
     Transfer(n-1,A,B) (leaving the largest disk out of play) 
     Move largest disk to peg C 
     Transfer(n-1,B,C) (leaving the largest disk out of play)

M(n) be the number of moves made by the above algorithm


M(n) = 2M(n-1) + 1  with M(1) = 1


Unroll the recursion into a “rooted tree”




A tree, with a special node, designated as the root


Typically drawn “upside down”


Parent and child relation: u is v’s parent if the 
unique path from v to root contains edge {v,u}  
(parent unique; root has no parent)


If u is v’s parent v, then v is a child of u


u is an ancestor of v, and v a descendent of 
u if the v-root path passes through u


Leaf is redefined for a rooted tree, as a 
node with no child 


Root is a leaf iff it has degree 0 
(if deg(root)=1, conventionally not called a leaf)
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Leaf: no children.  Internal node: has a child


Ancestor, descendant: partial orders


Subtree rooted at u: with all descendants of u


Depth of a node: distance from root.  
Height of a tree: maximum depth


Level i: Set of nodes at depth i.


Note: tree edges are between adjacent levels


Arity of a tree: Max (over all nodes) 
number of children. m-ary if arity ≤ m.


Full m-ary tree: Every internal node  
has exactly m children.  
Complete & Full: All leaves at same level
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Complete & Full m-ary tree


One root node with m children at level 1


Each level 1 node has m children at level 2


m2 nodes at level 2


At level i, mi nodes


mh leaves, where h is the height


Total number of nodes:


m0 + m1 + m2 + … + mh = (mh+1-1)/(m-1)


Prove by induction:  
(mh-1)/(m-1) + mh = (mh+1-1)/(m-1)


Binary tree (m=2)


2h leaves, 2h-1 internal nodes
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Tower of Hanoi

M(1) = 1 
M(n) = 2M(n-1) + 1 
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Doing it bottom-up. 
Could also think 

top-down



M(1) = 1 
M(n) = 2M(n-1) + 1 
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Exponential growth


M(2) = 3, M(3) = 7, ...


M(n) = #nodes in a complete and full binary tree of 
height n-1


M(n) = 2n - 1


Tower of Hanoi


