Recursive Definitions 3))
Unrolling Recurrences (u(‘;z)@!

Unrolling a recursion

@ Often helpful to try “unrolling” a recursion to see what
IS happening

@ e.g., expand into a chain:
@ T(0)=0 & T(n) =T(n-1) + n2 wvn2l
o T(n-1) = T(n-2) + (n-1)2, T(n-2) = T(n-3) + (n-2)?, ...
@ T(n) = n2 + (n-1)2 + (n-2)2 + T(n-3) Vvn23
@ T(n) = 2k=1t0n k2 + T(O) vn20

Another example

@T(l)= 0
TN =T(LN/21)+1 wN22

@ Let us consider N of the form 2n (so we can forget the floor)

5 T(N) = 1 + T(N/2) Y [y l's]
A slowly
growing function

=1+1+T(N/A&) are there?

=1+14+..+T(1)
@ T(2n) = n
@ T(N) =logz N (or simply log N) for N a power of 2

@ General N? T monotonically increasing (by strong induction). So,
T(2LlogNJ) < T(N) < T(2TlogNT) : ie., [logN] <T(N) < [log N

@ In fact, T(N) = [log N | (Exercise)

Tower of Hanoi

@ Recursive algorithm (optimal for 3 pegs)

@ Transfer(n,A,C):
If n=1, move the single disk from peg A to peg C
Else
Transfer(n-1,A,B) (leaving the largest disk out of play)
Move largest disk to peg C
Transfer(n-1,B,C) (leaving the largest disk out of play)

@ M(n) be the number of moves made by the above algorithm
@ M(n) = 2M(n-1) + 1 with M(1) =1

® Unroll the recursion into a “rooted tree”

' root '

Rooted Tree

@ A tree, with a special node, designated as the root the
. W . " parent

@ Typically drawn “upside down / \ 4
@ Parent and child relation: u is vs parent if the a
unique path from v to root contains edge {v,u} - Chf“d
(parent unique; root has no parent) / \ o

@ If uis vs parent v, then v is a child of u O MHO
|

@ u is an ancestor of v, and v a descendent 017 \ \
u if the v-root path passes through u ® ®

@ Leaf is redefined for a rooted tree, as a / \
node with no child

|
9
@ Root is a leaf iff it has degree O @ h ®

(if deg(root)=1, conventionally not called a leaf)

Q 0 O 9

Q 0O

Rooted Tree

Leaf: no children. Internal node: has a child the

Ancestor, descendant: partial orders
Subtree rooted at u: with all descendants of u

Depth of a node: distance from root.
Height of a tree: maximum depth / \

Level i: Set of nodes at depth i.

Note: tree edges are between adjacent lev?ds

‘/

Arity of a tree: Max (over all nodes)
number of children. m-ary if arity < m. /

|
Full m-ary free: Every internal node \
has exactly m children. ‘ ‘ h ‘

Complete & Full: All leaves at same level

' root '

Rooted Tree

@ Complete & Full m-ary tree

the

@ One root node with m children at level 1 parent

® Each level 1 node has m children at level 2 / \ an
@ m2 nodes at level 2 u Ch”d

@ At level i, mi nodes / \ ‘ of u

@ mh leaves, where h is the height
@& Total number of nodes:

@ MO+ ml+m2+ ..+ mh=(mb-1)/(m-1) / \ / \ /\ [\
@ Prove by induction: ‘ "““.

(mh-1)/(m-1) + mh = (mh+1-1)/(m-1)
@ Binary tree (m=2) h

@ 2h leaves, 2"-1 internal nodes

@ M(1) =1

M(n) = 2M(n-1) + 1

I

Doing it bottom-u
Could also think
top-down

.

Y

_

Tower of Hanoi

@ M(1) =1
M(n) = 2M(n-1) + 1

@ Exponential growth d@

o M(2) = 3, M(3) = 7, . b b

@ M(n) = #nodes in a complete and full binary tree of
height n-1

@ M(n) = 2n -1

