
Recursive Definitions
Unrolling Recurrences

Unrolling a recursion

Often helpful to try “unrolling” a recursion to see what
is happening

e.g., expand into a chain:

T(0) = 0 & T(n) = T(n-1) + n2 ∀n≥1

T(n-1) = T(n-2) + (n-1)2, T(n-2) = T(n-3) + (n-2)2, ...

T(n) = n2 + (n-1)2 + (n-2)2 + T(n-3) ∀n≥3

T(n) = ∑k=1 to n k2 + T(0) ∀n≥0

Another example
T(1) = 0
T(N) = T(⎣N/2⎦) + 1 ∀N≥2

Let us consider N of the form 2n (so we can forget the floor)

T(N) = 1 + T(N/2)
 = 1 + 1 + T(N/4)
 = ...
 = 1 + 1 + ... + T(1)

T(2n) = n

T(N) = log2 N (or simply log N) for N a power of 2

General N? T monotonically increasing (by strong induction). So,
T(2⎣log N⎦) ≤ T(N) ≤ T(2⎡log N⎤) : i.e., ⎣log N⎦≤ T(N) ≤⎡log N⎤

In fact, T(N) =⎣log N⎦ (Exercise)

How many 1’s
are there?

A slowly
growing function

Tower of Hanoi
Recursive algorithm (optimal for 3 pegs)

Transfer(n,A,C):
 If n=1, move the single disk from peg A to peg C
 Else
 Transfer(n-1,A,B) (leaving the largest disk out of play)
 Move largest disk to peg C
 Transfer(n-1,B,C) (leaving the largest disk out of play)

M(n) be the number of moves made by the above algorithm

M(n) = 2M(n-1) + 1 with M(1) = 1

Unroll the recursion into a “rooted tree”

A tree, with a special node, designated as the root

Typically drawn “upside down”

Parent and child relation: u is v’s parent if the
unique path from v to root contains edge {v,u}
(parent unique; root has no parent)

If u is v’s parent v, then v is a child of u

u is an ancestor of v, and v a descendent of
u if the v-root path passes through u

Leaf is redefined for a rooted tree, as a
node with no child

Root is a leaf iff it has degree 0
(if deg(root)=1, conventionally not called a leaf)

u

v

Rooted Tree
root

a
child
 of u

the
parent
of v

a leaf

Leaf: no children. Internal node: has a child

Ancestor, descendant: partial orders

Subtree rooted at u: with all descendants of u

Depth of a node: distance from root.
Height of a tree: maximum depth

Level i: Set of nodes at depth i.

Note: tree edges are between adjacent levels

Arity of a tree: Max (over all nodes)
number of children. m-ary if arity ≤ m.

Full m-ary tree: Every internal node
has exactly m children.
Complete & Full: All leaves at same level

Rooted Tree
root

a
child
 of u

the
parent
of v

a leaf

u

v

Complete & Full m-ary tree

One root node with m children at level 1

Each level 1 node has m children at level 2

m2 nodes at level 2

At level i, mi nodes

mh leaves, where h is the height

Total number of nodes:

m0 + m1 + m2 + … + mh = (mh+1-1)/(m-1)

Prove by induction:
(mh-1)/(m-1) + mh = (mh+1-1)/(m-1)

Binary tree (m=2)

2h leaves, 2h-1 internal nodes

Rooted Tree
root

a
child
 of u

the
parent
of v

a leaf

u

v

1

1
M(1)

Tower of Hanoi

M(1) = 1
M(n) = 2M(n-1) + 1

1

1M(3)

M(2)

M(1)
1

1M(2)

M(1)
1

M(1)

Doing it bottom-up.
Could also think

top-down

M(1) = 1
M(n) = 2M(n-1) + 1

1

1

1

1 1

1

1

Exponential growth

M(2) = 3, M(3) = 7, ...

M(n) = #nodes in a complete and full binary tree of
height n-1

M(n) = 2n - 1

Tower of Hanoi

