Recursive Definitions Unrolling Recurrences

Unrolling a recursion

Often helpful to try "unrolling" a recursion to see what is happening

e.g., expand into a chain:

- T(0) = 0 & T(n) = T(n-1) + n² ∀n≥1
 - $T(n-1) = T(n-2) + (n-1)^2$, $T(n-2) = T(n-3) + (n-2)^2$, ...
 - T(n) = n² + (n−1)² + (n−2)² + T(n−3) $\forall n \ge 3$
 - T(n) = Σ_{k=1 to n} k² + T(0) ∀n≥0

Another example

```
T(1) = 0
T(N) = T( [N/2]) + 1 \quad \forall N ≥ 2
```

= 1 + 1 + ... + T(1)

T(N) = 1 + T(N/2)= 1 + 1 + T(N/4)= ... How many 1's are there? A slowly growing function

 $T(2^n) = n$

 $T(N) = \log_2 N$ (or simply log N) for N a power of 2

General N? T monotonically increasing (by strong induction). So,
 T(2 Llog N ⊥) ≤ T(N) ≤ T(2 [log N]): i.e., Llog N ⊥ ≤ T(N) ≤ [log N]

In fact, T(N) = ⌊log N⌋ (Exercise)

Tower of Hanoi

Recursive algorithm (optimal for 3 pegs)

Transfer(n,A,C):

If n=1, move the single disk from peg A to peg C Else

Transfer(n-1,A,B) (leaving the largest disk out of play) Move largest disk to peg C Transfer(n-1,B,C) (leaving the largest disk out of play)

M(n) be the number of moves made by the above algorithm
M(n) = 2M(n-1) + 1 with M(1) = 1
Unroll the recursion into a "rooted tree"

Rooted Tree

A tree, with a special node, designated as the root

- Typically drawn "upside down"
- Parent and <u>child</u> relation: u is v's parent if the unique path from v to root contains edge {v,u} (parent unique; root has no parent)

If u is v's parent v, then v is a child of u

- u is an <u>ancestor</u> of v, and v a <u>descendent</u> of u if the v-root path passes through u
- Leaf is redefined for a rooted tree, as a node with no child

Root is a leaf iff it has degree 0
(if deg(root)=1, conventionally not called a leaf)

parent of v

۵

child

of u

U

V

the

root

Rooted Tree

root

the

parent

of v

U

V

a leaf

۵

child

of u

- Leaf: no children. Internal node: has a child
- Ancestor, descendant: partial orders
- Subtree rooted at u: with all descendants of u
- Depth of a node: distance from root. Height of a tree: maximum depth
- Level i: Set of nodes at depth i.
- Note: tree edges are between adjacent levels
- Arity of a tree: Max (over all nodes)
 number of children. <u>m-ary</u> if arity ≤ m.
- Full m-ary tree: Every internal node has exactly m children. <u>Complete & Full</u>: All leaves at same level

Rooted Tree

Complete & Full m-ary tree 0 One root node with m children at level 1 0 Each level 1 node has m children at level 2 3 \odot m² nodes at level 2 At level i, mⁱ nodes m^h leaves, where h is the height Total number of nodes: 3 $m^{0} + m^{1} + m^{2} + ... + m^{h} = (m^{h+1}-1)/(m-1)$ Prove by induction: $(m^{h}-1)/(m-1) + m^{h} = (m^{h+1}-1)/(m-1)$ Binary tree (m=2) 0 2^h leaves, 2^h-1 internal nodes 1

a leaf

root

the

parent

of v

u

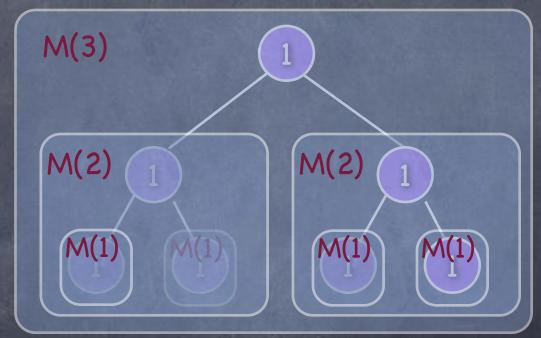
V

۵

child

of u

Tower of Hanoi



Doing it bottom-up. Could also think top-down

Tower of Hanoi

M(1) = 1 M(n) = 2M(n-1) + 1

Second Exponential growth

 \odot M(2) = 3, M(3) = 7, ...

1

1

1

1

1

1

 $O(n) = 2^n - 1$