Recursive Definitions Generating Functions

Generating Functions

- A generating function is an alternate representation of an infinite sequence, which allows making useful deductions about the sequence (including, possibly, a closed form)
- Sequence f(0), f(1), ... is represented as the formal expression $G_f(X) \triangleq f(0) + f(1) \cdot X + f(2) \cdot X^2 + ...$ (ad infinitum)

o i.e., for f : ℕ→ℝ, we define $G_f(X) \triangleq \Sigma_{k \ge 0} f(k) \cdot X^k$

𝔅 e.g., If f(k) = a^k for some a∈ℝ, G_f(X) = Σ_{k≥0} a^k·X^k

"Ordinary Generating Functions"

Generating Functions

- Generating functions sometimes have a succinct representation
- o e.g., For f(k) = a^k for some a∈ℝ, G_f(X) = $\Sigma_{k \ge 0}$ a^k·X^k
 - If we substituted for X a real number x sufficiently close to 0, we have |ax| < 1 and this would converge to 1/(1-ax)</p>
 - So we write $G_f(X) = 1/(1-aX)$ (for sufficiently small |X|). This will later let us manipulate $G_f(X)$ algebraically

• A useful tool for manipulating/analysing generating functions • For $a \in \mathbb{R}$, $\begin{pmatrix} a \\ k \end{pmatrix} \triangleq \frac{a(a-1)\dots(a-k+1)}{k!}$ $(k \in \mathbb{Z}^+)$, and $\begin{pmatrix} a \\ 0 \end{pmatrix} \triangleq 1$ • Extended binomial theorem: For |x| < 1, $a \in \mathbb{R}$, $(1+x)^a = \sum_{k \ge 0} \begin{pmatrix} a \\ k \end{pmatrix} \cdot x^k$

O Useful in finding a closed form for f given G_f of certain forms
 e.g., G_f(X) = 1/(1−X). Then, Σ_{k≥0} f(k) · X^k = (1−X)⁻¹

 $\begin{pmatrix} -1 \\ k \end{pmatrix} = (-1)(-2)...(-k)/k! = (-1)^k \Rightarrow (1-X)^{-1} = \sum_{k \ge 0} X^k \Rightarrow f(k)=1$

Similarly, $\binom{-2}{k} = (-2)(-3)...(-k-1)/k! = (-1)^k(k+1)$ ⇒ 1/(1-X)² = Σ_{k≥0} (k+1) · X^k

Extended Binomial Theorem

- Gf(X) = 1/(1-aX)^b for f(k) = $(-a)^{k} \cdot \binom{-b}{k} = \binom{b+k-1}{k} \cdot a^{k}$ e.g., b=1: f(k) = a^k. b=2: f(k) = (k+1).a^k
- $G_{f+g}(X) = G_f(X) + G_g(X)$
- G_g(X) = X⋅G_f(X), where g(0)=0 and g(k+1) = f(k) for k≥0
- If a generating function G_f is known and has a nice form, then often using the extended binomial theorem, one can compute a closed-form expression for f
- \odot But how do we get G_f ?

Generating Functions From Recurrence Relations e.g., f(0)=0, f(1) = 1. f(n) = f(n-1) + f(n-2), ∀n≥2. [Fibonacci] o f(n)·Xⁿ = X·f(n-1)·Xⁿ⁻¹ + X²·f(n-2)·Xⁿ⁻²
 (for n≥2) $\Rightarrow \sum_{n \geq 2} f(n) \cdot X^{n} = X \cdot \sum_{n \geq 2} f(n-1) \cdot X^{n-1} + X^{2} \cdot \sum_{n \geq 2} f(n-2) \cdot X^{n-2}$ $\Rightarrow G_{f}(X) - f(O) - f(I) \cdot X = X \cdot (G_{f}(X) - f(O)) + X^{2} \cdot G_{f}(X)$ \Rightarrow $G_{f}(X) (1-X-X^{2}) = f(O) + (f(1)-f(O)) \cdot X$ \odot G_f(X) = X/(1-X-X²)

More generally:
 f(0) = c. f(1) = d. f(n) = a ⋅ f(n-1) + b ⋅ f(n-2), ∀n≥2

• $G_{f}(X) = (c + (d-ac)X)/(1-aX-bX^{2})$

Generating Functions For Series Summation

- Suppose $g(k) = \sum_{j=0 \text{ to } k} f(j)$
- What is $G_g(X)$, in terms of $G_f(X)$?

 - So, ∀k≥1, g(k)·X^k = g(k−1)·X^{k−1}·X + f(k)·X^k
 - $G_g(X) = g(0) + X \cdot G_g(X) + (G_f(X) f(0))$
 - \odot G_g(X) = G_f(X)/(1-X)