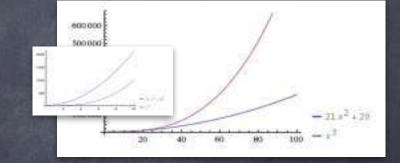
Asymptotics The Big O



How it scales

In analysing running time (or memory/power consumption) of an algorithm, we are interested in how it <u>scales</u> as the problem instance grows in "size"

Running time on small instances of a problem are often not a serious concern (anyway small)

Also, exact time/number of steps is less interesting

- Can differ in different platforms. Not a property of the algorithm alone.
- Thus "unit of time" (constant factors) typically ignored when analysing the algorithm.

How it scales

- e.g., suppose number of "steps" taken by an algorithm to sort a list of n elements varies between 3n and 3n²+9 (depending on what the list looks like)
 - If n is doubled, time taken in the worst case could become (roughly) 4 times. If n is tripled, it could become (roughly, in the worst case) 9 times
 - An upper bound that grows "like" n²
- Typically, interested in easy to interpret guarantees
 Resource required expressed as a function of input size
 Upper bounds robust to constant factor speed ups

Upper-bounds: Big O

T(n) has an upper-bound that grows "like" f(n)

I(n) = O(f(n))

 $\exists c, k > 0, \forall n \ge k, 0 \le T(n) \le c \cdot f(n)$

Unfortunate notation! An alternative used sometimes: T(n) ∈ O(f(n))

Note: we are defining it only for T & f which are eventually non-negative

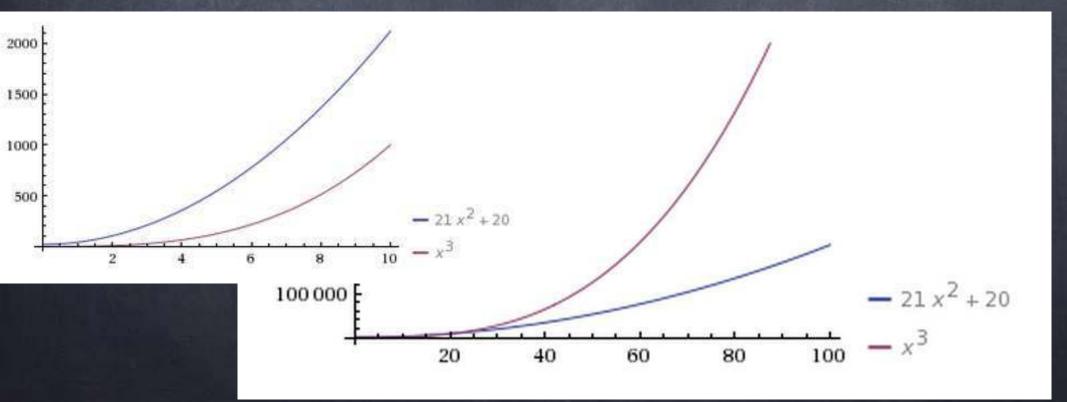
Note: order of quantifiers! c can't depend on n (that is why c is called a <u>constant</u> factor)

Important: If T(n)=O(f(n)), f(n) <u>could</u> be much <u>larger</u> than T(n) (but only a constant factor smaller than T(n))

T(n) = O(f(n)) $\exists c, k > 0, \forall n \ge k, 0 \le T(n) \le c \cdot f(n)$ Upper-bounds: Big O

 \odot e.g. T(x) = 21x² + 20

 $T(x) = O(x^3)$



lsc, k > 0, ∀n ≥ k, 0 ≤ T(n) ≤ c·f(n) Upper-bounds: Big O

 \odot e.g. T(x) = 21x² + 20

 \odot T(x) = O(x³)

T(n) = O(f(n))

T(x) = O(x²) too, since we allow scaling by constants
But T(x) ≠ O(x).

T(n) = O(f(n)) $\exists c, k > 0, \forall n \ge k, 0 \le T(n) \le c \cdot f(n)$ Upper-bounds: Big O O Used in the analysis of running time of algorithms: Worst-case Time(input size) = O(f(input size)) Also used to bound approximation errors $o e.q., | loq(n!) - loq(n^n) | = O(n)$ • A better approximation: $|\log(n!) - \log((n/e)^n)| = O(\log n)$ • Even better: $|\log(n!) - \log((n/e)^n) - \frac{1}{2} \log(n)| = O(1)$ • We may also have T(n) = O(f(n)), where f is a decreasing function (especially when bounding errors) \odot e.g. T(n) = O(1/n)

T(n) = O(f(n)) $\exists c, k > 0, \forall n \ge k, 0 \le T(n) \le c \cdot f(n)$ Big O: Some Properties • Suppose T(n) = O(f(n)) and R(n) = O(f(n)) i.e., $\forall n \ge k_T$, 0 ≤ T(n) ≤ c_T · f(n) and $\forall n \ge k_R$, 0 ≤ R(n) ≤ c_R · f(n) \odot T(n) + R(n) = O(f(n)) Then, $\forall n \ge max(k_T,k_R)$, 0 ≤ T(n)+R(n) ≤ (c_R+c_T) · f(n) If eventually (∀n≥k), R(n) ≤ T(n), then T(n) - R(n) = O(T(n)) $\forall n \geq max(k,k_R), 0 \leq T(n) - R(n) \leq 1 \cdot T(n)$ • If T(n) = O(g(n)) and g(n) = O(f(n)), then T(n) = O(f(n)) $\forall n \geq max(k_T, k_q), 0 \leq T(n) \leq c_T \cdot g(n) \leq c_T c_q \cdot f(n)$ e.g., 7n² + 14n + 2 = O(n²) because 7n², 14n, 2 are all O(n²) More generally, if T(n) is upper-bounded by a degree d polynomial with a positive coefficient for n^d , then $T(n) = O(n^d)$

T(n) = O(f(n)) $\exists c, k > 0, \forall n \ge k, 0 \le T(n) \le c \cdot f(n)$ Some important functions T(n) = O(1): ∃c s.t. T(n) ≤ c for all sufficiently large n T(n) = O(log n). T(n) grows quite slowly, because log n grows quite slowly (when n doubles, log n grows by 1) T(n) = O(n): T(n) is (at most) linear in n T(n) = O(n²): T(n) is (at most) quadratic in n $T(n) = O(n^d)$ for some fixed d: T(n) is (at most) polynomial in n $T(n) = O(2^{d \cdot n})$ for some fixed d: T(n) is (at most)

exponential in n. T(n) could grow very quickly.

A General Solution (a.k.a. "Master Theorem") • $T(n) = a T(n/b) + c \cdot n^d$ (and T(1)=1. ٥ nd a≥1,b>1 integer, c>0, d≥0 real.) children Say n=b^k (so only integers encountered) total at this level (n/b)d (n/b)^d (n/b)^d (n/b)^d #levels = log_b n = k $= a \cdot (n/b)^d$ • T(n) = O(n^d (1+ (a/b^d) + ... + (a/b^d)^k) total at ith level = $a^{i} \cdot (n/b^{i})^{d}$ • If $a = b^d$, contribution at each level = n^d . T(n) = O($n^d \cdot \log n$) \odot If a < bd: 1+ (a/bd) + (a/bd)² + ... = O(1). T(n) = O(nd) $If a > b^{d}: (a/b^{d})^{k}[1 + (b^{d}/a) + (b^{d}/a)^{2} + ...] = O((a/b^{d})^{k}) = a^{k}/n^{d}$ $T(n) = O(a^k) = O(2^{k \cdot \log a}) = O(2^{\log n \cdot \log a/\log b}) = O(n^{\log_b a})$

Tight Bounds: Theta Notation

If we can give a "tight" upper and lower-bound we use the Theta notation

 \odot e.g., $3n^2 - n = \Theta(n^2)$

• If $T(n) = \Theta(f(n))$ and $R(n) = \Theta(f(n))$, $T(n) + R(n) = \Theta(f(n))$

\simeq and \ll

- Asymptotically equal: f(n) ≃ g(n) if $\lim_{n → ∞} f(n)/g(n) = 1$
 - i.e., eventually, f(n) and g(n) are equal (up to lower order terms)
 - If $\exists c>0$ s.t. $f(n) \approx c \cdot g(n)$ then $f(n) = \Theta(g(n))$ (for f(n) and g(n) which are eventually positive)
- Asymptotically much smaller: $f(n) \ll g(n)$ if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$
 - If $f(n) \ll g(n)$ then f(n) = O(g(n)) but $f(n) \neq \Theta(g(n))$ (for f(n) and g(n) which are eventually positive)
- Note: Not necessary conditions:

 And O do not require the limit to exist (e.g., f(n) = n for odd n and 2n for even n: then f(n) = \Omega(n))