
Asymptotics

The Big O

How it scales
In analysing running time (or memory/power consumption) of
an algorithm, we are interested in how it scales as the
problem instance grows in “size”

Running time on small instances of a problem are often not
a serious concern (anyway small)

Also, exact time/number of steps is less interesting

Can differ in different platforms. Not a property of the
algorithm alone.

Thus “unit of time” (constant factors) typically ignored
when analysing the algorithm.

How it scales
e.g., suppose number of “steps” taken by an algorithm to
sort a list of n elements varies between 3n and 3n2+9
(depending on what the list looks like)

If n is doubled, time taken in the worst case could
become (roughly) 4 times. If n is tripled, it could become
(roughly, in the worst case) 9 times

An upper bound that grows “like” n2

Typically, interested in easy to interpret guarantees

Resource required expressed as a function of input size

Upper bounds robust to constant factor speed ups

Upper-bounds: Big O

T(n) has an upper-bound that grows “like” f(n)

Note: we are defining it only for T & f
which are eventually non-negative

Note: order of quantifiers! c can’t depend on n
(that is why c is called a constant factor)

Important: If T(n)=O(f(n)), f(n) could be much larger than
T(n) (but only a constant factor smaller than T(n))

Unfortunate notation!
An alternative used

sometimes:
T(n) ∈ O(f(n))

T(n) = O(f(n))

∃c, k > 0, ∀n ≥ k, 0 ≤ T(n) ≤ c⋅f(n)

e.g. T(x) = 21x2 + 20

T(x) = O(x3)

T(n) = O(f(n))

∃c, k > 0, ∀n ≥ k, 0 ≤ T(n) ≤ c⋅f(n)

Upper-bounds: Big O

T(x) = O(x2) too, since we allow scaling by constants

But T(x) ≠ O(x).

∀c>0, ∀k>0, ∃x*≥k T(x*) > c.x*

e.g. T(x) = 21x2 + 20

T(x) = O(x3)

T(n) = O(f(n))

∃c, k > 0, ∀n ≥ k, 0 ≤ T(n) ≤ c⋅f(n)

Upper-bounds: Big O

Used in the analysis of running time of algorithms:
Worst-case Time(input size) = O(f(input size))

e.g. T(n) = O(n2), T(n) = O(n log n)

Also used to bound approximation errors

e.g., | log(n!) - log(nn) | = O(n)

A better approximation: | log(n!) - log((n/e)n) | = O(log n)

Even better: | log(n!) - log((n/e)n) - ½⋅log(n) | = O(1)

We may also have T(n) = O(f(n)), where f is a decreasing
function (especially when bounding errors)

e.g. T(n) = O(1/n)

T(n) = O(f(n))

∃c, k > 0, ∀n ≥ k, 0 ≤ T(n) ≤ c⋅f(n)

Upper-bounds: Big O

Big O: Some Properties
Suppose T(n) = O(f(n)) and R(n) = O(f(n))

i.e., ∀n≥kT, 0 ≤ T(n) ≤ cT⋅f(n) and ∀n≥kR, 0 ≤ R(n) ≤ cR⋅f(n)

 T(n) + R(n) = O(f(n))

Then, ∀n ≥ max(kT,kR), 0 ≤ T(n)+R(n) ≤ (cR+cT)⋅f(n)

If eventually (∀n≥k), R(n) ≤ T(n), then T(n) - R(n) = O(T(n))

∀n ≥ max(k,kR), 0 ≤ T(n) - R(n) ≤ 1⋅T(n)

If T(n) = O(g(n)) and g(n) = O(f(n)), then T(n) = O(f(n))

∀n ≥ max(kT,kg), 0 ≤ T(n) ≤ cT⋅g(n) ≤ cTcg⋅f(n)

e.g., 7n2 + 14n + 2 = O(n2) because 7n2, 14n, 2 are all O(n2)

More generally, if T(n) is upper-bounded by a degree d polynomial
with a positive coefficient for nd, then T(n) = O(nd)

T(n) = O(f(n))

∃c, k > 0, ∀n ≥ k, 0 ≤ T(n) ≤ c⋅f(n)

Some important functions
T(n) = O(1): ∃c s.t. T(n) ≤ c for all sufficiently large n

T(n) = O(log n). T(n) grows quite slowly, because log n
grows quite slowly (when n doubles, log n grows by 1)

T(n) = O(n): T(n) is (at most) linear in n

T(n) = O(n2): T(n) is (at most) quadratic in n

T(n) = O(nd) for some fixed d: T(n) is (at most)
polynomial in n

T(n) = O(2d⋅n) for some fixed d: T(n) is (at most)
exponential in n. T(n) could grow very quickly.

T(n) = O(f(n))

∃c, k > 0, ∀n ≥ k, 0 ≤ T(n) ≤ c⋅f(n)

A General Solution
(a.k.a. “Master Theorem”)

T(n) = a T(n/b) + c⋅nd (and T(1)=1.
a≥1,b>1 integer, c>0, d≥0 real.)

Say n=bk (so only integers encountered)

#levels = logb n = k

T(n) = O(nd (1+ (a/bd) + … + (a/bd)k)

If a = bd, contribution at each level = nd. T(n) = O(nd⋅log n)

If a < bd: 1+ (a/bd) + (a/bd)2 + … = O(1). T(n) = O(nd)

If a > bd: (a/bd)k[1 + (bd/a) + (bd/a)2 + …] = O((a/bd)k) = ak/nd
T(n) = O(ak) = O(2k⋅log a) = O(2log n ⋅ log a/log b) = O(nlogb a)

nd a
children

(n/b)d (n/b)d (n/b)d (n/b)dtotal at this level
= a⋅(n/b)d

total at ith level = ai⋅(n/bi)d

Tight Bounds: Theta Notation

If we can give a “tight” upper and lower-bound we
use the Theta notation

T(n) = Θ(f(n)) if T(n)=O(f(n)) and f(n)=O(T(n))

e.g., 3n2-n = Θ(n2)

If T(n) = Θ(f(n)) and R(n) = Θ(f(n)), T(n) + R(n) = Θ(f(n))

≃ and ≪
Asymptotically equal: f(n) ≃ g(n) if limn→∞ f(n)/g(n) = 1

i.e., eventually, f(n) and g(n) are equal (up to lower order
terms)

If ∃c>0 s.t. f(n) ≃ c⋅g(n) then f(n) = Θ(g(n))
(for f(n) and g(n) which are eventually positive)

Asymptotically much smaller: f(n) ≪ g(n) if limn→∞ f(n)/g(n) = 0

If f(n) ≪ g(n) then f(n) = O(g(n)) but f(n) ≠ Θ(g(n))
(for f(n) and g(n) which are eventually positive)

Note: Not necessary conditions: Θ and O do not require the
limit to exist (e.g., f(n) = n for odd n and 2n for even n: then
f(n) = Θ(n))

