Asymptotics
The Big O

How it scales

@ In analysing running time (or memory/power consumption) of
an algorithm, we are interested in how it scales as the
problem instance grows in “size”

@ Running time on small instances of a problem are often not
a serious concern (anyway small)

@ Also, exact time/number of steps is less interesting

@ Can differ in different platforms. Not a property of the
algorithm alone.

@ Thus "unit of time” (constant factors) typically ignored
when analysing the algorithm.

How it scales

@ e.g., suppose number of “steps” taken by an algorithm to
sort a list of n elements varies between 3n and 3n2+9
(depending on what the list looks like)

@ If n is doubled, time taken in the worst case could
become (roughly) 4 times. If n is tripled, it could become
(roughly, in the worst case) 9 times

@ An upper bound that grows "like” n2
@ Typically, interested in easy to inferpret guarantees
@ Resource required expressed as a function of input size

@ Upper bounds robust fo constant factor speed ups

Upper-bounds: Big O

@ T(n) has an upper-bound that grows "“like” f(n)

~N

Unfortunate notation!

' T(n) & O(F(n)) — An alternative used
3c, k>0, vn2k, 0<T(n) < c-f(n somefimes:
. L T(n) € O(f(n))

@ Note: we are defining it only for T & f *
which are eventually non-negative

@ Note: order of quantifiers! ¢ cant depend on n
(that is why c is called a constant factor)

@ Important: If T(n)=O(f(n)), f(n) could be much larger than
T(n) (but only a constant factor smaller than T(n))

T() = O(F(n)) e
3¢, k>0, vn2Kk, 0<T(n) < c-F(n)"

Upper-bounds: Big O

@ e.g. T(x) = 21x2 + 20

@ T(x) = O(x3)

2000

1500

1000

500

T(n) — O(F(n))

3c, k>0, vn2k, 0 <T(n) < c-f(n)

Upper-bounds: Big O
@ e.g. T(x) = 21x2 + 20

@ T(x) = O(x3)

@ T(x) = O(x?) too, since we allow scaling by constants
@ But T(x) # O(x).

@ ve>0, vk>0, ax*>k T(x*) > c.x*

T(n) = O(F(n))
3c, k>0, vn2k, 0 <T(n) < c-f(n)

Upper-bounds: Big O

@ Used in the analysis of running time of algorithms:
Worst-case Time(input size) = O(f(input size))

@ e.g. T(n) = O(n?), T(n) = O(n log n)

@ Also used to bound approximation errors
o e.g., | log(n!) - log(n") | = O(n)
@ A better approximation: | log(n!) - log((n/e)) | = O(log n)
@ Even better: | log(n!) - log((n/e)") - ¥2-log(n) | = O(1)

@ We may also have T(n) = O(f(n)), where f is a decreasing
function (especially when bounding errors)

@ e.g. T(n) = O(1/n)

T(n) = O(f(n))

3c, k>0, vn2k, 0 <T(n) < c-f(n)

Big O: Some Properties

@ Suppose T(n) = O(f(n)) and R(n) = O(f(n))
@ i.e., vn2kt, O < T(n) < ct-f(n) and vn2kgr, O < R(n) < cr-f(n)
@ T(n) + R(n) = O(f(n))
@ Then, vn 2 max(kt,kr), O < T(n)+R(n) < (cr+cT): f(n)
@ If eventually (vn2k), R(n) < T(n), then T(n) - R(n) = O(T(n))
@ vn > max(k,kr), O < T(n) - R(n) < 1-T(n)
@ If T(n) = O(g(n)) and g(n) = O(f(n)), then T(n) = O(f(n))
@ vn > max(kr,kKg), 0 < T(n) < cr-g(n) < creq- f(n)
® e.g., 7n2 + l4n + 2 = O(n2) because 7n2, 14n, 2 are all O(n2)

® More generally, if T(n) is upper-bounded by a degree d polynomial
with a positive coefficient for nd, then T(n) = O(nd)

T(n) = O(F(n))
3c, k>0, vn2k, 0 <T(n) < c-f(n)

Some important functions

@ T(n) = O(1): 3c s.t. T(n) < ¢ for all sufficiently-large n

@ T(n) = O(log n). T(n) grows quite slowly, because log n
grows quite slowly (when n doubles, log n grows by 1)

@ T(n) = O(n): T(n) is (at most) linear in n
@ T(n) = O(n2): T(n) is (at most) quadratic in n

@ T(n) = O(nd) for some fixed d: T(n) is (at most)
polynomial in n

@ T(n) = O(24'n) for some fixed d: T(n) is (at most)
exponential in n. T(n) could grow very quickly.

A General Solution
(a.k.a. "Master Theorem”)

@ T(n) = a T(n/b) + ¢-nd (and T(1)=L1.
a21,b>1 integer, ¢>0, d>0 real.)

@ Say n=bk (so only integers encountered)

total at this level
= a-(n/b)d

@ T(n) = O(nd (1+ (a/bd) + ... + (a/bd)k) total at ith level = ai-(n/bi)d

@ #levels = logpn = Kk

@ If a = bd, contribution at each level = nd. T(n) = O(nd-log n)

@ If a < bd: 1+ (a/bd) + (a/bd)2 + ... = O(1). T(n) = O(nd)

@ If a > bd: (a/bd)K[1 + (bd/a) + (bd/a)2 + ...] = O((a/bd)k) = ak/nd
T(n) = O(Clk) . O(Zk.log a) = O(Zlog n - log a/log b) . O(nlogb a)

Tight Bounds: Theta Notation

@ If we can give a “tight” upper and lower-bound we
use the Theta notation

@ T(n) = O(F(n)) if T(n)=0O(f(n)) and f(n)=0(T(n))
@ e.g., 3n2-n = BO(n?2)
@ If T(n) = O(f(n)) and R(n) = BO(f(n)), T(n) + R(n) = BO(f(n))

~ and «

@ Asymptotically equal: f(n) = g(n) if limn—. f(n)/g(n) =1

@ i.e., eventually, f(n) and g(n) are equal (up to lower order
terms)

@ If 3¢50 s.t. f(n) = c-g(n) then f(n) = ©(g(n))
(for f(n) and g(n) which are eventually positive)

@ Asymptotically much smaller: f(n) < g(n) if limn—. f(n)/g(n) =0

@ If f(n) < g(n) then f(n) = O(g(n)) but f(n) # ©(g(n))
(for f(n) and g(n) which are eventually positive)

@ Note: Not necessary conditions: ©® and O do not require the
limit to exist (e.g., f(n) = n for odd n and 2n for even n: then

f(n) = ©(n))

