
Asymptotics

The Big O



How it scales
In analysing running time (or memory/power consumption) of 
an algorithm, we are interested in how it scales as the 
problem instance grows in “size”


Running time on small instances of a problem are often not 
a serious concern (anyway small)


Also, exact time/number of steps is less interesting


Can differ in different platforms. Not a property of the 
algorithm alone.


Thus “unit of time” (constant factors) typically ignored 
when analysing the algorithm.



How it scales
e.g., suppose number of “steps” taken by an algorithm to 
sort a list of n elements varies between 3n and 3n2+9 
(depending on what the list looks like)


If n is doubled, time taken in the worst case could 
become (roughly) 4 times. If n is tripled, it could become 
(roughly, in the worst case) 9 times


An upper bound that grows “like” n2


Typically, interested in easy to interpret guarantees


Resource required expressed as a function of input size


Upper bounds robust to constant factor speed ups



Upper-bounds: Big O

T(n) has an upper-bound that grows “like” f(n)


 

Note: we are defining it only for T & f  
which are eventually non-negative


Note: order of quantifiers! c can’t depend on n 
(that is why c is called a constant factor)


Important:  If T(n)=O(f(n)), f(n) could be much larger than 
T(n) (but only a constant factor smaller than T(n))

Unfortunate notation! 
An alternative used 

sometimes:  
T(n) ∈ O(f(n))

T(n) = O(f(n))


∃c, k > 0,  ∀n ≥ k,  0 ≤ T(n) ≤ c⋅f(n)




e.g. T(x) = 21x2 + 20


T(x) = O(x3)

T(n) = O(f(n))


∃c, k > 0,  ∀n ≥ k,  0 ≤ T(n) ≤ c⋅f(n)


Upper-bounds: Big O



T(x) = O(x2) too, since we allow scaling by constants


But T(x) ≠ O(x). 


∀c>0, ∀k>0, ∃x*≥k  T(x*) > c.x* 

e.g. T(x) = 21x2 + 20


T(x) = O(x3)

T(n) = O(f(n))


∃c, k > 0,  ∀n ≥ k,  0 ≤ T(n) ≤ c⋅f(n)


Upper-bounds: Big O



Used in the analysis of running time of algorithms: 
Worst-case Time(input size) = O(f(input size))


e.g. T(n) = O(n2), T(n) = O(n log n)


Also used to bound approximation errors


e.g., | log(n!) - log(nn) | = O(n)


A better approximation: | log(n!) - log((n/e)n) | = O(log n)


Even better: | log(n!) - log((n/e)n) - ½⋅log(n) | = O(1)


We may also have T(n) = O(f(n)), where f is a decreasing 
function (especially when bounding errors)


e.g. T(n) = O(1/n)

T(n) = O(f(n))


∃c, k > 0,  ∀n ≥ k,  0 ≤ T(n) ≤ c⋅f(n)


Upper-bounds: Big O



Big O: Some Properties
Suppose T(n) = O(f(n)) and R(n) = O(f(n))


i.e., ∀n≥kT, 0 ≤ T(n) ≤ cT⋅f(n) and ∀n≥kR, 0 ≤ R(n) ≤ cR⋅f(n)


 T(n) + R(n) = O(f(n))


Then, ∀n ≥ max(kT,kR),  0 ≤ T(n)+R(n) ≤ (cR+cT)⋅f(n)


If eventually (∀n≥k), R(n) ≤ T(n), then T(n) - R(n) = O(T(n))


∀n ≥ max(k,kR), 0 ≤ T(n) - R(n) ≤ 1⋅T(n)


If T(n) = O(g(n)) and g(n) = O(f(n)), then T(n) = O(f(n))


∀n ≥ max(kT,kg), 0 ≤ T(n) ≤ cT⋅g(n) ≤ cTcg⋅f(n)


e.g., 7n2 + 14n + 2 = O(n2) because 7n2, 14n, 2 are all O(n2)


More generally, if T(n) is upper-bounded by a degree d polynomial 
with a positive coefficient for nd, then T(n) = O(nd) 

T(n) = O(f(n))


∃c, k > 0,  ∀n ≥ k,  0 ≤ T(n) ≤ c⋅f(n)




Some important functions
T(n) = O(1):  ∃c  s.t. T(n) ≤ c for all sufficiently large n


T(n) = O(log n).  T(n) grows quite slowly, because log n 
grows quite slowly (when n doubles, log n grows by 1)


T(n) = O(n):  T(n) is (at most) linear in n


T(n) = O(n2): T(n) is (at most) quadratic in n


T(n) = O(nd) for some fixed d:  T(n) is (at most) 
polynomial in n


T(n) = O(2d⋅n) for some fixed d:  T(n) is (at most) 
exponential in n. T(n) could grow very quickly. 

T(n) = O(f(n))


∃c, k > 0,  ∀n ≥ k,  0 ≤ T(n) ≤ c⋅f(n)




A General Solution 
(a.k.a. “Master Theorem”)

T(n) = a T(n/b) + c⋅nd  (and T(1)=1.  
a≥1,b>1 integer, c>0, d≥0 real.)


Say n=bk (so only integers encountered)


#levels = logb n = k


T(n) = O( nd ( 1+ (a/bd) + … + (a/bd)k )


If a = bd, contribution at each level = nd.  T(n) = O(nd⋅log n)


If a < bd: 1+ (a/bd) + (a/bd)2 + … = O(1). T(n) = O(nd)


If a > bd: (a/bd)k[1 + (bd/a) + (bd/a)2 + … ] = O((a/bd)k) = ak/nd 
T(n) = O(ak) = O(2k⋅log a) = O(2log n ⋅ log a/log b) = O(nlogb a)

nd a  
children

(n/b)d (n/b)d (n/b)d (n/b)dtotal at this level 
= a⋅(n/b)d

total at ith level = ai⋅(n/bi)d



Tight Bounds: Theta Notation

If we can give a “tight” upper and lower-bound we 
use the Theta notation


T(n) = Θ(f(n))  if  T(n)=O(f(n)) and f(n)=O(T(n))


e.g., 3n2-n = Θ(n2)


If T(n) = Θ(f(n)) and R(n) = Θ(f(n)),  T(n) + R(n) = Θ(f(n))



≃ and ≪
Asymptotically equal: f(n) ≃ g(n)  if limn→∞ f(n)/g(n) = 1


i.e., eventually, f(n) and g(n) are equal (up to lower order 
terms)


If ∃c>0 s.t.  f(n) ≃ c⋅g(n) then f(n) = Θ(g(n))   
(for f(n) and g(n) which are eventually positive)


Asymptotically much smaller: f(n) ≪ g(n) if limn→∞ f(n)/g(n) = 0


If f(n) ≪ g(n) then f(n) = O(g(n)) but f(n) ≠ Θ(g(n)) 
(for f(n) and g(n) which are eventually positive)


Note: Not necessary conditions: Θ and O do not require the 
limit to exist (e.g., f(n) = n for odd n and 2n for even n: then 
f(n) = Θ(n) )


