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Abstract-How does a dense WiFi network perform, specifi­
cally for the common case of TCP download? While the empirical 
answer to this question is 'poor', analysis and experimentation 
in prior work has indicated that TCP clocks itself quite well, 
avoiding contention-driven WiFi overload in dense settings. This 
paper focuses on measurements from a real-life use of WiFi in 
a dense scenario: a classroom where several students use the 
network to download quizzes and instruction material. We find 
that the TCP download performance is poor, contrary to that 
suggested by prior work. Through careful analysis, we explain 
the complex interaction of various phenomena which leads to this 
poor performance. Specifically, we observe that a small amount 
of upload traffic generated when downloading data upsets the 
TCP clocking, and increases contention on the channel. Further, 
contention losses lead to a vicious cycle of poor interaction 
with autorate adaptation and TCP's timeout mechanism. To 
reduce channel contention and improve performance, we propose 
a modification to the AP scheduling policy to improve the 
performance of large TCP downloads. Our solution, WiFiRR, 
picks only a subset of clients to be served by the AP during 
any instant, and varies this set of "active" clients periodically 
in a round-robin fashion over all clients to ensure that no client 
starves. By reducing the number of contending nodes at any point 
of time, WiFiRR improves the download time of large TCP flows 
by 3.2x in a simulation of our classroom scenario. 

I. INTRODUCTION 

The omni-presence of WiFi needs no justification. While 
WiFi standards have improved significantly in terms of raw 
bit-rate, whether this has translated to corresponding improve­
ments in application throughput is unclear. We are specifically 
interested in dense user scenarios, such as conferences, sports 
stadiums, and large classrooms, with the latter two being 
especially nascent with respect to WiFi usage. How does a 
dense WiFi network perform, specifically for the common case 
of TCP downloads? This is the focus of our work. 

Prior work has shown, both analytically [1], [2] and exper­
imentally [3], [4], that TCP download performance does not 
degrade with increasing number of users in a WLAN. These 
results are based on the performance of long running TCP 
flows in controlled environments, using homogeneous well­
tested clients and artificial user traffic. These studies have 
reported good TCP download performance even with over a 
hundred clients [3]. 

In contrast, this paper presents a measurement study of 
TCP performance "in the wild" over a dense WiFi network, 

with real users running real applications over a variety of client 
devices. We conduct several measurements in a WiFi-enabled 
classroom, where students download online quiz questions and 
instruction material. Our results show that, in contrast to prior 
work, TCP performance degrades significantly in a dense usage 
scenario, even with 20-30 clients per access point. (We focus 
on a single WiFi BSS, and do not address scaling issues across 
multiple interfering BSSs.) 

We have analyzed why our results differ from the TCP 
download scenarios in prior research. With long running TCP 
downloads, the only traffic on the network is TCP data packets 
in the downlink and ACKs in the uplink. In such cases, the 
number of contenting nodes on the channel is usually quite 
low, because the AP alone transmits TCP data, and only the 
clients that most recently received a data packet are likely to 
contend for the channel to send an TCP ACK. In contrast, 
in our real-life measurements, we found significantly higher 
channel contention due to "chattiness" of real applications that 
create a small but noticeable amount of extra upload traffic 
besides TCP ACKs. 

For example, in our classroom scenario, a student logs in 
to the class webpage, authenticates herself, locates a file to 
download on a webpage (that has several smaller web objects 
in addition to the main object of interest), using a browser 
that opens several parallel TCP connections to download 
the content. In addition, users also have a low volume of 
background traffic automatically generated by email clients and 
such. Somewhat surprisingly, this small amount of extra traffic 
in the upload direction significantly increases the contention 
on the channel (as the number of active clients is now close 
to the total number of users), resulting in collisions due to 
the CSMA MAC protocol's channel arbitration mechanism. As 
a result, we found that TCP performance degraded severely, 
and students often took more than 8x the amount of time to 
download the files needed for an in-class quiz, as compared 
to a universe where TCP scaled perfectly with increasing user 
density. 

We find that the contention on the wireless channel and 
the resulting collision losses also have an undesirable effect 
on several other protocols in the system. For example, we 
observed that WiFi clients picked lower bit rates during (and 
for a short period of time after) contention, because most rate 
adaptation algorithms confuse collisions for channel losses. 
This lowering of rate increases the time taken for subsequent 
transmissions, further increasing contention, leading to a vi-

978-1-4799-8439-8/15/$31.00 ©2015 IEEE 



cious cycle. Further, we observed poor interaction between 
channel contention and TCP's timeout mechanism. We found 
that the RTT of TCP flows was highly variable due to con­
tention losses, confusing the TCP timeout algorithm, leading to 
spurious retransmissions. Note that while prior work [5], [6], 
[7], [8], [9], [10] has also observed some subset of these prob­
lems, our analysis has focused on comprehensively identifying 
all factors that contribute to poor TCP download performance 
in dense scenarios, and understanding their complex interplay. 

We also observed that in practice, several device drivers 
become unresponsive when operating under high contention 
losses, and need a driver reset to function even after the 
contention has subsided. All of these real-life effects further 
exacerbate the performance issues of TCP in a dense WiFi 
network. Note that we have verified and eliminated other 
factors (AP buffer mismanagement, wired network or server 
overload, external interference) as possible causes for the poor 
performance. 

Having identified excessive channel contention as the root 
cause behind the performance issues, we propose a solution, 
WiFiRR, to improve the performance of large TCP downloads 
in dense WiFi scenarios. WiFiRR works as a scheduler at the 
packet queue of an access point. WiFiRR identifies a subset 
of clients as "active" during every instant of time (up to 5 
clients in our implementation), and the AP serves downlink 
packets only to these clients. This results in the other clients 
going quiet during this period, leading to lower contention 
and improved performance. This set of active clients is varied 
periodically (every 6s in our case) to cover all clients in a 
round-robin fashion. Note that while clients may temporarily 
be deprived of service for short durations, they will eventually 
see improved performance over large TCP downloads. We 
evaluate our solution in simulation, and find that WiFiRR 
improves TCP download time by 3.2x over the base case of 
serving all clients uniformly all the time. Our solution also 
improves download time by 2.25x over WiFox [5], another 
solution that seeks to improve TCP download performance in 
dense scenarios. We realize that WiFiRR is not suited for dense 
WiFi deployments that see predominantly short or interactive 
flows, and adapting WiFiRR to work in such scenarios is part 
of ongoing work. 

Our contributions can be summarized as follows: (a) a real­
life measurement study of TCP download performance and its 
careful analysis, which identifies the factors that contribute 
(and eliminates the factors that do not) to poor performance 
in dense scenarios, and (b) a solution approach that improves 
the download time of large TCP flows by reducing channel 
contention. 

The rest of the paper is organized as follows. Section II 
discusses related work. Section III describes our measurement 
study in a real classroom, and Section IV describes some 
controlled experiments and simulations we conducted to un­
derstand the measurement results in the classroom. Section V 
describes our solution WiFiRR that improves performance 
by addressing the problems we found. Finally, Section VI 
concludes the paper. 

II. RELATED WORK 

Starting with Bianchi's seminal work [11], several re­
searchers have analytically shown that the performance of 
802.11 CSMAICA degrades with increase in offered load, due 
to increased contention on the wireless channel. This analysis 
assumes saturated traffic, i.e., all stations are always back­
logged and contend for the channel. [12] further generalizes the 
result, and shows that collision probability increases with in­
creasing number of stations. However, subsequent research [1], 
[2] has considered a more specific problem of TCP downloads 
over 802.11. In this case, the analysis shows that the number 
of contending stations is much lower than the total number of 
stations due to the TCP datalack clocking mechanism. When 
several downlink flows go through an AP, and the AP sends 
a data packet to a client at a certain instant, the client that 
received this data packet alone will generate a TCP ACK, and 
contend with the AP for the channel. All the other clients will 
not actively contend for the channel at this instant, until data 
packets arrive for them from the AP. This datalack clocking 
mechanism of TCP flows ensures that the contention on the 
channel and collision probability stay low, with the result that 
the system throughput does not degrade much with increasing 
number of clients. 

The analysis results of the scaling of TCP downloads have 
also been backed up by experimental studies [4], [3]. These 
papers show that the TCP's datalack clocking mechanism 
allows TCP downloads to scale to over hundred clients without 
any significant degradation of aggregate system throughput. 
However, the experiments in these papers consider only long 
running TCP flows and emulated user traffic on testbeds 
of homogeneous nodes. In contrast, our measurement study 
conducted with several tens of users trying to download files 
using TCP shows that TCP download does not scale as well 
in the context of real user traffic. 

Several researchers have reported some subset of the prob­
lems we have encountered in our measurement study, and 
suggested several techniques to address these problems. Prior 
work [5], [6], [7] has considered the problem of asymmetry 
between uplink and downlink traffic in WLANs. When a large 
number of users are downloading traffic over the WLAN, 
most traffic is downlink. However, the AP that delivers all the 
downlink traffic has to contend for the channel with the other 
clients, resulting in an unfair allocation to the downlink traffic. 
To solve this problem of asymmetry, these papers propose 
several MAC-layer enhancements to prioritize the AP's chan­
nel access. For example, WiFox [5] prioritizes AP's channel 
access over the clients dynamically depending on the load in 
the network. The AP accesses medium with high priority when 
AP's transmission queue size is high and accesses with default 
priority otherwise. As a result, WiFox claims to give 400-700% 
increase in throughput and 30-40% improvement in average 
response time. Our work differs from WiFox and other related 
work in that we identify and address several factors (besides 
asymmetry between uplink and downlink) that contribute to 
poor TCP download performance in dense scenarios. 

Other research [8] has observed the effect of channel 
contention on the RTT of TCP flows through a WLAN. The 
authors show that highly variable RTTs due to contention 
lead to incorrect estimation of TCP retransmission timeout, 
and hence lead to spurious retransmissions. The authors pro-



pose pnontIzation of TCP ACKs as a solution to address 
this problem. Researchers have also observed the impact of 
channel contention on bit rate adaptation [9], [10] in dense 
deployments, and proposed solutions to prevent lowering of 
bit rate unnecessarily in response to collisions. While each of 
the above papers measure and analyze a subset of problems 
that arise in a dense WiFi network, none of them have reported 
all of the problems or their complex interplay we find in 
our measurements. To summarize, our work improves over 
prior work on improving TCP performance in real-life dense 
scenarios by analyzing the problem more comprehensively, and 
identifying interplay of all the factors that contribute to poor 
performance. 

III. MEASUREMENTS IN A LIVE CLASSROOM 

A. Measurement setup 

We first describe our data collection method for measure­
ments in a real classroom. In a course with 124 registered 
students, taught by one of the authors, a subset of lectures 
involved downloads of supplementary instruction material by 
students, and some involved graded quizzes. The students used 
individual laptops and tablets, and some desktops as well, for 
these activities. Our setup consisted of students connecting to 
a web server that hosts instruction or quiz content. A small 
fraction of students used wired access. We had three enterprise­
grade WiFi APs, setup in the three non-overlapping 802.11g 
channels 1, 6, and 1l. All the relevant entities were on the 
same extended LAN. 

The activity was as follows. The students browsed to the 
content server, authenticated themselves, and downloaded a 
variety of content (video lectures, references, quizzes) over 
the wireless channel as instructed. We instrumented the web 
server to log the per-request service time. In addition, we also 
collected network traces from two vantage points: (i) The WiFi 
AP was instrumented to collect per-frame MAC layer statistics. 
Our code had access to hardware registers in the WiFi NIC, 
that let us determine the fraction of airtime that was spent 
in transmissions, receptions, and in idle listening at a very 
fine granularity of 250ns. (ii) A sniffer running tcpdump was 
connected via an Ethernet hub to the content server to collect 
TCP and HTTP logs. 

Prior to our measurements, we ensured that the WiFi AP, 
the web server, and the wired backhaul from the AP to the 
web server were not loaded. That is, the performance seen by 
the clients in all our measurements was constrained by the 
wireless network bottleneck. External WiFi interference was 
minimal. 

From all our measurements, we choose one representative 
dataset to present results from: a quiz conducted in class. In 
the quiz, 94 students, spread roughly equally over 3 APs, 
downloaded a quiz question paper of size :::200KB. A subset 
of 24 students also downloaded the optional reference material 
file of size :::4MB. We pick one of the three APs to present 
results from; the results at the others were similar. This AP in 
question served 32 students: all 32 students downloaded the 
quiz file, and 17 students downloaded the reference material. 
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Fig. 1: CDF of the time taken to download the quiz and 
references files. 

B. Results 

First, we present the most important performance metric 
- the completion time, since this delay determines how users 
perceive the quality of the network. The completion time is 
measured as the time from the issue of HTTP GET request for 
the particular file to the last packet of the download received 
by the user. Fig 1 shows the CDF of the completion times 
for all the clients, for both the quiz and reference files. To 
put these numbers in perspective, let us calculate the expected 
download time. First, note that our classroom was such that 
even the farthest client could comfortably operate at the highest 
54Mbps datarate of 802.11g, when operating in isolation (we 
verified this during AP placement). This physical layer data 
rate translates to about 24Mbps of TCP-layer throughput, after 
accounting for link-layer overheads and the overheads of TCP 
ACKs. If we go by prior work that claims that TCP download 
throughput scales perfectly with the number of clients, each 
client should have gotten a TCP throughput of 24Mbps/32. 
Assuming all clients downloaded both the quiz and reference 
file, which we overestimate as 5MB worth of content per client, 
the expected download time still works out to only about 54s. 
In contrast, the highest completion times in Fig 1 was 229s 
for the quiz file, and 478s for the reference filel! 

Next, we investigate why the completion time was so bad. 
Upon looking at the TCP time-sequence graphs, we found that 
some clients suffered severe TCP segment losses, and often 
timed out several times during the course of the measurement. 
Fig 2 shows the average TCP retransmission rate (averaged 
across all clients every 2s) as a function of time; most of these 
retransmissions were due to a TCP timeout. Fig 3 shows the 
TCP time sequence graph of a client that experienced multiple 
TCP timeouts. 

To understand why the application-layer performance was 
so bad, we analyze the logs collected at the AP to understand 
the MAC-layer performance in the network. Using our custom 
instrumentation of the AP driver, we determined what fraction 
of the airtime was reported as "busy" at the AP. This air 
occupancy percentage is shown in Fig 4 for the duration of 
the quiz download. Also shown is the aggregate download 

I This of course created logistical problems; the instructor had to give time 
extensions to those students who experienced delay in downloading! 
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Fig. 3: TCP time sequence diagram of a client that experienced quiz. 

multiple timeouts. 

throughput of the AP during this time. Both measures are 
shown as two-second averages. We see from the figure that 
there are periods where the channel is busy, and there are also 
periods where the channel is idle for large fractions of time. 
This behavior fits well with our earlier observation of TCP 
timeouts. We also note that, irrespective of the channel busy 
percentage, the aggregate throughput is poor most of the time. 

We further analyze the AP's logs to determine what 
caused the AP to deliver such low throughput, even when 
the channel was busy. We verified that the signal strength at 
all clients was good enough to support high bit rates. The 
other possibility is that of collisions, due to multiple clients 
picking the same backoff counter and transmitting in the same 
slot during CSMA MAC's channel arbitration mechanism. 
Collisions are notoriously hard to detect using packet logs, 
because collisions often result in a synchronization error at the 
physical layer, thereby leaving no trace in any kind of packet 
tracing mechanism. So, we use hardware registers exported to 
the device driver to determine the amount of "wasted" airtime 
at the AP, defined as the amount of time spent in one of the 
following activities: (i) transmitting packets that failed to elicit 
a link-layer ACK, (ii) receiving packets which could not be 
successfully decoded (either due to synchronization error at 
the physical layer, or a CRC error after synchronizing with the 
transmission). Fig 4 also shows this wasted airtime percentage 
at the AP as a function of time. This figure shows that around 
10-20% of the AP's airtime is often wasted, possibly due to 

collisions on the channel. 

We next investigate why the contention and collision rate 
on the channel was so high. Prior work, as discussed in 
Section II, shows that if the only traffic on the channel is 
TCP data and ACKs, the contention on the channel should 
be very low. However, in our measurement, we found that 
there was a small amount of extra upload traffic besides the 
TCP ACKs. Figs 5 and 6 show the rate of upload traffic 
in packets/sec and in kbps respectively. These metrics are 
shown as averages over lOOms intervals; this indicates the 
burstiness of the upload traffic. This traffic consists of GET 
requests for various embedded objects on the course webpage, 
traffic generated in navigating the authentication page, TCP 
handshake packets for the multiple connections the browser 
opens, and some small amount of extra background traffic 
likely generated by email clients, Dropbox, and other such 
applications. Note that the amount of upload traffic is very 
low, averaging at about 8kbps in aggregate across all clients 
at the AP. However, it appears that this traffic was enough 
to increase the contention on the channel, and cause collision 
losses. 

The contention on the channel due to a large number of 
active clients is further exacerbated by the interaction with 
the bit rate adaptation. It is well known in prior work that 
most rate adaptation algorithms mistake collision losses for 
poor signal on the channel, and lower the bit rate in the 
hope of increasing the probability of packet delivery. However, 
transmissions at lower bit rate take up more airtime, further 
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increasing the contention on the channel. Fig 7 shows a CDF 
of the time-averaged bit rates of the clients during the quiz. 
We see that most clients were operating at a very low average 
rate, suggesting that the rate adaptation algorithms were using 
lower rates upon observing losses. 

In addition to the metrics reported above, the overall 
experience of the students in using the WiFi network was 
very bad. When the students were simultaneously downloading 
large files and stressing the wireless networks, students often 
complained that their WiFi was not responding. We found 
many instances where a driver reset was needed to get the WiFi 
interface to work, even after the contention had subsided. We 
conjecture these to be possible device driver bugs that were 
triggered under the high loss rate situations we encountered 
in class. It is likely that such situations are not well tested in 
client driver code. 

Are collisions due to the CSMA MAC protocol mecha­
nisms alone enough to explain the high losses we saw in our 
measurements? Or were there any other factors at work? The 
limited control to vary parameters and monitor performance in 
a live measurement makes it difficult to answer some questions, 
which we seek to address with a combination of simulations 
and controlled experiments in the lab in the next section. 

IV. SIMULATIONS AND CONTROLLED EXPERIMENTS 

In this section, we describe several results from simulations 
and controlled experiments conducted in the lab to better 
understand the classroom WiFi measurements. 

A. Simulation 

As described earlier, accurately measuring collision losses 
in an experiment is a hard problem. Even using multiple 
wireless sniffers on the air cannot guarantee that we can 
identify the error rate due to collisions, because the sniffers 

TABLE I: Simulation setup 

Parameter Value 
WiFi Protocol 802.11g 
Rate adaptation algo- Minstrel 
rithm 

AP queue size 512 
Number of clients 30 
Download size 5MB 
Upload lraffic 10Kbps 
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Fig. 8: The bit rates chosen by a WiFi client in the presence 
of contention. 

themselves may fail to decode most collisions. Therefore, we 
resort to simulations, where we can instrument the simulator 
to identify collisions. 

We use the ns-3 network simulator to perform simulations. 
Our simulation model consists of 30 802.11g WiFi clients 
connected to an AP. To simulate the traffic seen in the 
classroom, each client downloads a 5MB file from a server 
via the AP, while uploading CBR traffic at the rate of 10 kbps 
over a TCP connection. The clients are placed close enough 
to the AP to eliminate the possibility of any channel losses, 
so that a packet loss occurs only if two clients pick the same 
backoff value and collide during the CSMA MAC operation. 
We have used the Minstrel rate adaptation algorithm, and a 
queue size of 512, as used in the real AP. Table I summarizes 
the parameters in our simulations. 

Our simulation resulted in a download time between 292 
and 435 seconds for the clients, which roughly matches the 
download performance seen during the classroom quiz. During 
the download, the collision rate on the channel (defined as 
the fraction of airtime on the channel that was wasted in 
collision) was between 15% and 25%, proving that the poor 
TCP performance was primarily due to collision losses on the 
channel. 

B. Controlled experiments 

Next, we perform several small-scale controlled experi­
ments in the lab to better understand the impact of collisions 
and contention on the channel. We first try to understand the 
impact of collision losses on the rate adaptation algorithm. 
We set up an experiment where a WiFi client (a Linux laptop 
with a Qualcomm Atheros QCA9565 / AR9565 Wireless 
Network Adapter (rev 01) device driver) is downloading a 
large file via the AP. After 2 minutes, we introduce 14 other 
WiFi clients on to the channel. These clients are Microtik 
single-board computers, that generate TCP upload traffic at 
the rate of 100kbps. After a further 2-minute duration of 
high channel contention between the 15 WiFi clients, we 
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channel contention. 

turn off the Microtik boards, and let the laptop traffic run 
for some more time. Fig 8 shows the time-averaged bit rate 
(averaged over 2 sec) of the laptop in the upload direction 
for the duration of this experiment. We observe from the 
figure that the rate adaptation algorithm lowers its bit rate 
due to collision losses, as expected. Further, we note that the 
rate adaptation algorithm takes around 12 seconds (after the 
Microtik boards are turned off) to recover from the effects 
of channel contention, which is approximately the timescale 
at which popular bit rate adaptation algorithms adapt rates. 
Similar results were observed with 3 other laptops running 3 
different device drivers as well. This recovery time of the bit 
rate adaptation algorithm has a significance in explaining our 
measurement data of the previous section. The bursty upload 
traffic seen in our experiment has several periods of quiet 
between bursts of high upload activity. However, due to the 
relatively long recovery time of the rate adaptation algorithm, 
the effects of contention (i.e., the lowering of transmit bit rates) 
persist even in the periods between upload bursts, magnifying 
the effect of the small amount of upload traffic. 

Next, we identify the impact of collision losses on TCP 
performance. We setup an experiment with 21 WiFi clients 
(7 laptops and 14 Microtik single-board computers) connected 
to an AP. The clients download a 9MB file from a server 
connected to the AP. The clients run a browser emulation 
script that generates around 50 GET requests to download 
several embedded objects in a sample webpage. In addition, the 
clients also generate a bursty upload TCP traffic at an average 
rate of 200 kbps, to simulate other background application 
traffic. This mix of upload and download traffic created enough 
contention on the channel to slow down the TCP downloads, 
and we observed several of the effects noticed in the classroom 
measurements. A wireless sniffer over the channel reported 
that 22% of frames decoded were marked as link-layer retries. 
While this is not a true indication of the collision rate on 
the channel (as the sniffer may have missed capturing several 
frames due to synchronization errors caused by collisions etc.), 
it gives us enough indication that the loss rate due to collisions 
is substantial. 

High channel contention also leads to variable delays in 
transmitting a packet (a transmission may succeed without 
collisions sometimes, but may require several unsuccessful 
attempts and multiple backoffs some other time). For example, 
Fig 9 shows the highly variable TCP RTT of a single client 
in the controlled experiment with 21 clients described above. 
Sudden RTT variations confuse the TCP's RTO estimation al­
gorithm, and may lead to TCP timing out unnecessarily, while 

the data packet is still in transit. In fact, we collected c1ient­
side logs in the experiment above and noticed 61 instances of 
spurious TCP timeouts and retransmissions (summed across all 
the clients), where the original transmission and the subsequent 
retransmission were both received by the client after a long 
delay. While we could not collect client-side logs in the class­
room, we did notice highly variable RTTs and expect several 
of the TCP retransmissions seen were in fact unnecessary. 

Finally, we could reproduce the phenomenon of client 
device drivers becoming non-responsive under high contention 
with several different laptops and device drivers in our con­
trolled experiments as well. 

Note that we have used our controlled experiments to verify 
that there were no other causes of packet loss introduced by 
the wired channel or the AP in our measurements. We repeated 
our experiments with APs from two popular vendors, and 
obtained similar results. We also verified that there was no 
buffer mismanagement at the AP. For example, with vendor 
supported AP logs we verified that the AP buffer always had 
enough packets to transmit over the wireless link, and that 
buffer underflow was not the reason for poor throughput. 

V. OUR SOLUTION ApPROACH 

We now describe our solution, WiFiRR, that seeks to im­
prove the worst case completion time of large TCP downloads 
in a dense WiFi setting like classrooms. 

A. Design of WiFiRR 

The measurements and analyses of the previous sections 
lead us to conclude that high channel contention is root cause 
for poor TCP download performance. To address this problem, 
we seek to limit the number of clients contending for the wire­
less channel at any instant by modifying the AP's MAC-layer 
scheduling policy. One can plug in any MAC scheduling policy 
which ensures fairness, we are using FIFO with round-robin. 
Our solution, WiFiRR, is designed a modification to access 
point driver code that manages the AP's buffers. Normally, 
APs transmit packets belonging to all clients from its buffer in 
a FIFO manner. With WiFiRR, an AP designates a subset of K 
out of the total N clients as "active" during a given time slot 
T. Whenever the AP gets a chance to transmit, the AP looks 
through its queue and preferentially picks packets to these K 
active clients, skipping over packets from non-active clients in 
the queue. The AP varies the set of K active clients in a round­
robin fashion in every slot, so that every client eventually gets 
a chance to make progress. The AP transmits broadcast and 
management frames normally, as per their turn in the queue. 
Of course, the AP does not keep the link idle: if there are no 
broadcast frames or frames to active clients, it will transmit 
frames to non-active clients. 

Now, in a time slot T, since we suppress downlink TCP 
data and ACK packets for the marked inactive clients, their 
TCPs will go quiet for the duration of the slot, and the uplink 
traffic from the clients is greatly suppressed as well. This leads 
to a lower number of contending nodes, fewer collision losses, 
and eventually, better TCP performance for the active clients. 
Our solution does not require any change at the clients. 

While our solution leads to a temporary stalling of the 
non-active clients, the overall performance improves over large 
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TCP downloads, because the clients will experience much 
better network conditions once they become active. We realize 
that our solution may not be beneficial in cases where the 
TCP flows are very short or interactive, because the negative 
effects of stalling may overweigh the benefits in such cases. 
Enhancing the core ideas of WiFiRR to better handle short and 
interactive TCP flows is part of ongoing work. 

B. Results 

We implemented WiFiRR in ns-3. We use the simulation 
scenario as described in Section IV-A to evaluate our scheme: 
a simulation of 30 clients performing a large download (of 
5MB each), while simultaneously generating a low rate upload 
traffic. We evaluate the performance gains with WiFiRR in this 
scenario. 

We experimented with different values of slot duration T 
and number of active clients K. Fig 10 shows the minimum, 
median, and maximum download completion times over 30 
clients with WiFiRR, where the slot duration is varied from 
1 sec to 50 sec, and the number of active clients K is fixed 
at 5. The green and blue lines also show the minimum and 
maximum completion times without WiFiRR. We find that the 
worst case completion time reduces to l37 sec from 435 sec 
(3.2 x reduction) when the slot duration is 6 sec. Intuitively, 
the optimal choice of slot duration is dependent on the RTT 
of the flows. The slot duration should be in the order of 
few RTT in order for TCP flows to adapt to the change in 
channel contention. The average RTT of the TCP flows in our 
simulation was around 1.2s due to high contention, resulting 
in a slot duration of 6s working best2. 

Fig 11 shows a similar comparison of completion times 
with and without WiFiRR, where we set the slot size T to 
6s, but vary the number of active clients K. Here, K = 5 
leads to the best performance of 3.2 x reduction in worst case 
completion time. We have also verified that WiFiRR leads to 
a lower rate of collisions. While the average rate of collisions 
on the channel was 15-25% without WiFiRR, the collision rate 
with WiFiRR (6s slot and 5 active clients) was 2-3%. 

We also compare our solution WiFiRR (with 6s slot 
duration, 5 active clients) to WiFox [5], another solution 
that aims to improve TCP download performance in dense 
scenarios by addressing the asymmetry between uplink and 

2Making the WiFiRR approach practical would require devising a mecha­
nism to determine the slot duration as a function of the RTT. 
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Fig. 11: Min, max, median download completion times vs K 
(T fixed at 6s). 
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Fig. 12: Min, median and max download completion times. 

downlink traffic (see Section II). We implemented WiFox in 
ns3, as per the specification in [5]. We made AP use 802.11e, 
and implemented the high and default priority channel access 
settings as described in [5]. In WiFox, time is divided into 
intervals of size T', each of which is divided into n slots. In 
every time unit T', the AP accesses the channel in a prioritized 
fashion for k ::; n slots. The mapping between the priority level 
k and the queue size of the AP can be logarithmic, exponential, 
linear and logistic. We use the logistic mapping as it gave the 
best results for WiFox. We also tuned the maximum queue 
size (from 50 mentioned in the paper to 512) as it resulted 
in better completion time for WiFox in our simulation setting. 
We set T to lOOms, n to 10 slots, and set the k range to be O­
W. Fig 12 shows the download completion times with WiFox, 
as compared to the cases with WiFiRR and without WiFiRR. 
While WiFox does lead to improved performance over the base 
case without WiFiRR, WiFiRR outperforms WiFox by 2.25x 
in our scenario of large TCP downloads. 

VI. CONCLUSION AND FUTURE WORK 

This paper presented measurements of TCP download per­
formance in a dense WiFi scenario of WiFi-enabled classroom, 
where students download quizzes and instruction material 
over WiFi. Our results show that TCP download performance 
degrades significantly with increased user density, much more 
beyond what is to be expected from prior work. We analyze 
the reason for this poor performance and find that the small 
amount of background upload traffic that coexists with the TCP 
download traffic in real life causes an increase in contention on 
the wireless channel. The subsequent collision losses trigger 
undesirable behavior in other protocols: the bit rate adaptation 
unnecessarily lowers its bit rate, TCP gets confused by the 
highly variable RTTs and performs spurious retransmits, and 



device drivers perform unexpectedly under such losses. We 
also propose a solution, WiFiRR, that improves the perfor­
mance of large TCP downloads in a dense scenario. Our 
solution operates as a scheduler at the AP buffer, and restricts 
the number of active clients contending for the channel at any 
instant by selectively transmitting packets to different subsets 
of active clients over different slots. 

Going forward, we will make WiFiRR adaptive to short 
or interactive flows. We plan to build and deploy a prototype 
of WiFiRR, to make our classroom teaching using WiFi more 
effective. Finally, we believe that future standards of WiFi must 
also focus on addressing this very real performance bottleneck 
of contention on the wireless channel in dense usage scenarios, 
in addition to just improving the peak data throughput at the 
physical layer, to provide a better experience to the end user. 
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