Design and Engineering of Computer Systems

Lecture 10:
Virtual machines and containers

Mythili Vutukuru
IIT Bombay



o wepe \)N\@ g E
Virtualization _ ©> los. 0S

—

(L INI Y S Harduw one
* The story so far: user programs run over OS, which runs on system

hardware (CPU, main memory, I/O devices)

* Sometimes, we want to virtualize the entire system: make one system
appear like multiple separate systems

* Separate users, processes, operating systems, isolated from each other
* Why? Efficient sharing of hardware, better isolation than with processes

* How? Run multiple virtual machines (VMs) on the same underlying
physical machine (PM)

* Each VM runs its own separate guest OS, guest applications
* Another technique: containers (lightweight VMs)
* Renewed interest in virtualization due to popularity of cloud computing



What is cloud computlng? 9@“/3

I

* Cloud: commodity servers with lots of compute (CPUs) and storage (memory,
disk), connected with high speed networking, located in data centers

e Usually setup by public cloud providers (Amazon, Azure, Google Cloud etc.) for access by
anyone on demand, for a payment

* Many ways of interfacing with the cloud

* Cloud providers manage infrastructure. Users access cloud infrastructure (e.g., a VM,
storage space) and run their own applications on it (Infrastructure-as-a-service/laaS)

* Cloud providers setup software platforms, expose APls. Users build cloud applications
using platform APIs (Platform-as-a-Service/PaaS)

* Cloud providers setup and manage complete software applications. Users access cloud
software directly (Software-as-a-service/SaaS)

* Multiple users (tenants) share cloud servers using virtualization
e Each tenant/user is given VMs/containers on a cloud server




(= app
BRPRPEPEX

* Traditional way of building systems: run applications directly on local V\/W
servers (“baremetal”)

_

 Alternatives: run applications on a private cloud (within organization) or on
public cloud (managed by cloud providers)

* Multiple components of a computer system (front-end, back-end, web server,
database, ..) run on separate|VMs or containers on cloud infrastructure

* Cloud management and orchestration software eases management of
VMs/containers on the cloud
* Lifecycle management of VMs: creation, deletion, restart after crash
Placing VMs optimally on physical machines that are free
Migrating VMs across physical machines, e.g., in case of server maintenance
Instantiating additional replicas of components when under load (auto-scaling)

Examples: Openst Kubernetes

Cloud applications




Pros and cons of cloud computing

* Advantages of running applications on the cloud
e Multiplexing gains: multiple VMs/containers can share hardware resources better
* Orchestration: cloud orchestration simplifies running large systems
* Hassle-free maintenance: hardware/software maintained by cloud providers
. Pw: no need to invest in servers if only lightly used
* Quick provisioning on demand: servers available immediately when needed

* Disadvantages of running applications on cloud
* Worse performance: longer delay to access servers via internet
* Higher cost: if cloud servers used heavily, maybe cheaper to have own servers

o



BB
Virtual Machine Monitor (VMM) =

\ M)+ host 0
H/w

* VMs run over a virtual machine monitor (VMM) or hypervisor
. Mhyperwsor. VMM runs directly on hardware, includes OS functionality
* Type 2 (hosted) hypervisor: VMM runs alongside existing host OS
* The OS running inside VM is called guest OS

* How are VMs implemented? -

* VMM multiplexes VMs much like how OS multiplexes processes
* VMM performs machine switch (much like context switch)
* Run a VM for a bit, save context and switch to another VM, and so on...

* What is the challenge?

* Guest OS expects to have unrestricted access to hardware, unlike user programs
* But guest OS cannot be permitted privileged operations for security reasons




(AALA
UM _
Trap and emulate VMM e
gu@@%@ﬁ (l)
 How to implement a VMM? O 05 g N Y

* All CPUs have multiple privilege levels
* Ring 0,1,2,3 in x86 CPUs
* Normally, user process inring 3, OSin ring 0
* Privileged instructions only run by OS in ring O, not by user code

* Trap-and-emulate VMM: simple VMM design
* Guest app inring 3, guest OS in ring 1, VMM/host OS in ring O
* Guest OS is protected from guest apps, but not as privileged as VMM
* Privileged operations of guest OS trap to VMM, VMM emulates action on behalf of guest

* Assumption: any instruction that accesses hardware is privileged, guest OS
cannot execute instructions that access hardware without trapping to VMM




Trap and emulate VMM: examples C%uwos

* Guest VM sets IDT (Interrupt Descriptor Table)
* Setting IDT is privileged operation, traps to VMM
* VMM remembers IDT of guest, but does not use guest IDT on CPU C\)M
* VMM uses its own IDT that invokes VMM code on traps

NI

e Guest user application makes system call
* Traps to VMM, VMM jumps to guest OS code, system call handled by guest OS

* Guest OS initiates I/O operation by writing to 1/O device register
* Privileged instruction, traps to VMM, VMM performs the action for guest

* Interrupt arrives from 1/0O device

* Traps to VMM, VMM finds the guest VM to which this interrupt belongs
* VMM injects interrupt to guest, invokes the interrupt handler of guest VM



Problems with trap and emulate in x86

* Guest OS may realize it is running at lower privilege level
* Some CPU registers indicate CPU privilege level
* Guest OS can read these values and get offended!

* Some x86 instructions which change hardware state run in both
privileged and unprivileged modes

* Will behave differently when guest OS is in ring O vs in less privileged ring 1
* OS behaves incorrectly in ringl, but will not trap to VMM

* Why these problems?
* OS code not normally designed to run at a lower privilege level
* Instruction set architecture of x86 not developed with virtualization in mind

* Simple trap and emulate idea does not work with x86 CPUs



Techniques to virtualize x86 (1)

* Paravirtualization: rewrite guest OS code to be virtualizable
* Guest OS won’t invoke privileged operations, makes “hypercalls” to VMM
* Needs OS source code changes, cannot work with unmodified OS
* Example: Xen hypervisor

e Full virtualization: CPU instructions of guest OS binary/executable are
translated to be virtualizable

* Problematic instructions (e.g., access hardware but do not trap to VMM) are
translated to trap to VMM

* Translation of OS binary only, works with unmodified OS binary
* Higher overhead than paravirtualization
* Example: VMWare workstation




2 e e 5

Techniques to virtualize x86 (2) v /w SR e
@) W V) O 9

* Hardware assisted virtualization: KVM/QEMU in Linux VMX
* x86 CPU has added support for virtualization in recent models: VIMX rﬁw
* 4 rings in regular mode, 4 rings in VMX mode
* Guest OSis run in VMX mode ring 0 (not as powerful as regular ring 0) hd Q%l
* VMM and host OS run in regular ring O

VMM sets triggers (e.g., specific instructions, interrupts) which can cause VM
exit from VMX mode to VMM/host OS in regular mode

* No need to rewrite OS code, or translate OS binary

* Best of both words: unmodified guest OS running in ring 0, VMM retains
control on guest OS execution

* Optimizations around reducing overhead of VM exits to improve performance




Contai . lightweight virtualizati -
ntainers: lightweight virtualization @ -

* Running multiple VMs imposes some overhead

* Multiple guest OS images consume memory W
* Switching across guest VMs is expensive % 04t 05 /\/N‘
e Containers: lightweight virtualization /’“’W

e Containers share same base OS image, but provide illusion of
different systems by having:

 Different process trees (processes in one container cannot “see” those in
other containers)

 Different root file systems (libraries, system programs, configuration files, ..)
e Resource usage limits enforced across containers -
* Other such mechanisms for isolation O 5

e Containers have lesser overhead than VMs, but also lesser isolation

cl] C22




. . . 1 P
Container implementation [/, -

* Two mechanisms in Linux kernel over which containers are built:

* Namespaces: a way to provide isolated view of a certain global resource (e.g., root
file system or process tree) to a set of processes

* Cgroups: a way to set resource limits on a group of processes

* Frameworks like LXC, Docker use these mechanisms to implement / CAPP
containers \\/g@;ﬁmhp

e LXC is general container framework, provides VM-like interface

* Docker containers are optimized to run a single program (easy way to package an
application and all its dependencies)

> <
 Docker Swarm, Kubernetes: container orchestration frameworks to O
manage multiple containers across multiple physical machines
e Kubernetes manages multiple “pods” of containers across multiple physical nodes

* Lifecycle management of containers, autoscaling to handle overload, and so on.




Summary

* In this lecture:
* Virtual machines, VMM / hypervisor
* Techniques for virtualization
* Containers
* Cloud computing

* Try the following: setup a VM with a guest OS different from your host
OS on your computer. Which virtualization technique does your VM
use?

* Try the following: setup a container on your system. Observe the
isolation that containers provide.



