Design and Engineering of Computer Systems

Lecture 11:
Memory management in OS

Mythili Vutukuru
IIT Bombay

. CPU Cocle
Recap: Running a program o éﬁ data
aa v{ Staci_
* User program executable = code + compile-time data | haap
* When program is run, memory image of process is created by OS
e Code + data from executable loaded into main memory , MA(T
e Extra memory allocated for stack and heap .N\.aaa

e Code+data in memory image assigned virtual addresses starting from O

* CPU begins executing process, fetches code/data using virtual addresses

* OS knows actual memory locations of program code+data
 Maintained in a data structure called page table
e Used to translate virtual addresses to physical addresses

e We will understand this memory management done by OS in more detail

Virtual address space =

 Virtual address space: set of virtual addresses available to a process]
e 0to amaxvalue (2232 = 4GB in 32-bit OS)
* Process can access code/data in its virtual address space

* Physical address space of a system: physical memory addresses in ng J
— b G5

* Why do we need virtual addresses?
* Physical address of code/data not known at compile time
 Memory allocated to a process can be non-contiguous, hide this detail from user
e Can control which memory a process can “see”, useful for isolation

* Addresses in CPU registers and pointer variables = virtual addresses
e User only sees virtual addresses, not physical addresses Z\

 But memory hardware can access data using physical addresses only

Memory allocation and address translation

e OS allocates physical memory to a process, has translation information

* It knows which virtual address maps to which physical address <

: : : . X
* Memory allocation method determines address translation logic — 7

* Simplest form of memory management: base and bound N rB
* Place entire memory image [0,N] contiguously starting at memory address base B
* Virtual address X translated to physical address B+X

e Access to virtual addresses beyond N will not be permitted

 Who does address translation? A piece of hardware called Memory
Management Unit (MMU)

* Every memory access by CPU is translated by MMU before reaching RAM
* OS provides information to MMU (e.g., base and bound) for translation/error checking

P4
Role of OS vs MMU CpU == %\mu — kA
Y
O
e OS allocates memory, builds translation information of process
« But OS does not do the actual address translation on every memory access

 When process is context switched in, translation information is provided to
MMU

* Once user code starts running on CPU, OS is out of the picture (until a trap)

e CPU runs process code, accesses code/data at virtual addresses
* Virtual addresses translated to physical addresses by MMU
« RAM is accessed using physical addresses

* MMU raises a trap if there is any error in the address translation
* CPU executes trap instruction, OS code runs to handle the error

e OS gives new information to MMU on every context switch

Segmentation

\f

* Older way of memory management: generalized base and bounds

e Each segment of the program (code, data, stack,..) is placed separately in
memory at a different base

* Every segment has a separate base and bound

Virtual address = segment identifier : offset within segment

Physical address = base address of segment + offset within segment
* Bound of a segment checked for incorrect access

Multiple base, bound values stored in MMU for translation

MMU throws a segmentation fault if a segment accessed beyond bound
* Program fault, traps to OS to handle error, may terminate process

Paging

* Paging: widely used memory management system today
 Virtual address space divided into fixed size pages
* Each page is assigned a free physical memory frame by OS

 Memory allocation is at granularity of fixed size pages (e.g., 4KB)
e Avoids external fragmentation (no wastage of space between pages)
* Internal fragmentation (space may be wasted inside partially filled page)

* Page table maps logical page numbers to physical frame numbers O —- -
* One page table per process .

 Maintained by OS, part of PCB of process

* Location of page table of currently running process known to MMU
» Written into special CPU register, updated on context switch/page table change

o]
Address translation using paging « @@z@l

* Address translation performed by MMU

 Virtual address accessed by CPU = page number | offset within page
* Find frame number corresponding to page number by looking up page table

* Physical address = physical frame number | offset within page 7 \’[
* Example: 32-bit CPU, 4 KB pages _ “ DN

e 32 bit virtual address = 20 bit page number | 12 blt offset within page

* Page table maps 27220 pages to physical frame numbers 1o

» Physical address = Physical frame number | 12 bit offset within page 2= = & K

* Overhead of paging: before doing actual memory access, MMU must
do extra memory access for page table mapping

 How to avoid this? N A MU i > gAY

CTU —>VA— My

Translation Lookaside Buffer (TLB) 115
PA
VA —= PA
* Overhead of memory translation: every memory access preceded by
extra memory accesses to read page table RAM

e To reduce this overhead, MMU caches the most recent translations in
translation lookaside buffer (TLB)

* Small cache within MMU to store page number to frame number mappings
e LRU policy to evict entries if TLB is full (locality of reference)

* TLB only caches address translations, not actual memory contents
e Different from CPU caches that cache actual memory contents
 If TLB hit, physical address is ready, fetch memory contents in one memory access
 |f TLB miss, extra memory access for page table access also needed

* TLB flush on context switch: mappings cached in TLB change

\ -
Cru —#—>cache MM UL —5TLR
What happens on a memory access?

>R AM

* CPU has requested data (or instruction) at a certain memory address
 The address is looked up in various levels of CPU caches (L1, L2, L3)
 |f address found, cache hit, data item is returned to CPU
* |f cache miss, CPU must fetch data from main memory via MMU
* MMU looks up TLB to find frame number corresponding to page number

 If TLB hit, physical address is found, main memory is accessed to fetch data
(data cached in CPU for future access)

* |f TLB miss, MMU first accesses page table in main memory, computes
physical address (translation added to TLB cache), then accesses main
memory again to fetch data (data cached in CPU for future access)

* High cache hit rates and high TLB hit rates are important for good
performance of the system

(AN
Revisiting process virtual address space cocke

T —
* What should virtual address space/page table of process have? Any | b g
memory that the process needs to access during its execution O < j—7
* |ts own memory image: code, data, stack, heap
* Other common memory it needs to access: shared language libraries, OS

 Why? MMU only allows access to physical memory that is mapped in page table of
process at some virtual address

e OS binary image (kernel code, data) is mapped into the virtual address
space of every process
* OS code/data assigned virtual addresses (high addresses not used by user code)
e OS virtual addresses are mapped to physical addresses of OS via page table
* There is only one copy of OS code/data in RAM (loaded during system bootup)
* Page tables of all processes have same mappings to same OS physical addresses

* Why is this done? Easy to jump to OS code during a trap

Isolation and security

* How is OS code/data protected from illegal access by user?

* Page table has permissions for every memory page
* Whether read/write or rej_d-_ogly (code pages are read-only)
* Whether page can be accessed in user mode or kernel mode

* Page table mappings for OS code are protected to allow access only in
kernel mode
e User program in user mode cannot jump to high virtual addresses of OS code
e CPU in kernel mode (after trap instruction) can access OS code/data

* MMU ensures that user programs cannot access any memory beyond
what is visible in the user-accessible part of virtual address space

Summary

* In this lecture:
* Memory management and address translation by OS, MMU
* Segmentation, paging
e OS is part of virtual address space of all processes

* Try to understand the virtual address of processes in your system.

* |In Linux systems, information about the virtual address space of a process can
be found under /proc/PID/maps. You can see mappings for user code and
data, shared libraries, and so on.

