Design and Engineering of Computer Systems

Lecture 14:
File system and memory

Mythili Vutukuru
IIT Bombay



Storing program data
Code

» User applications deal with data (variables, data structures, ..) d;:}@

* Global/static variables are in program executable \/
Staci
neoP

 Memory allocated via malloc stored on heap >

* Function variables and arguments stored on stack —— 7 :
VA
e Can reqguest one or more pages from OS via mmap to store data \—%ng :
* All of these mechanisms do not store data persistently J m%&

e Data in main memory is lost when power is turned off

 How to store program data persistently?
* Use files on secondary storage (hard disk and other such storage media)

* In this lecture: interaction of files with main memory
* Next week: more details on filesystem, how file operations are done




File abstraction o

O

* File: sequence of bytes, stored persistently on disk

* Directory: container for files and other sub-directories

* Directory tree: hierarchy of directories and sub-directories, containing files
* Root file system: directory tree starting at root (“/”)
» Directory trees on disk can be mounted at various locations of root filesystem

* Containers have different root file system view on the same OS

. :
Steps to access a file _ . { fd = open(“/home/foo/a.txt”)
* Open afile using system call, get a file descriptor read(fd, ..)

* File descriptor is a handle to refer to file for read/write write(fd, ..)
* Close file when done accessing it

close(fd)



fd = open(“/home/foo/a.txt”)
char buf[64]

Reading and writing a file n = read(fd, buf, 64)

buf[0] = ...

n = write(fd, buf, 64)

After opening a file, process can read/write to a file as a stream
* File descriptor used as handle to refer to the open file stream

* Read system call reads specified number of bytes into a user-defined buffer, returns number of
bytes read

* Write system call writes specified number of bytes from a user-defined buffer, returns number

of bytes written
Implemented by commands to disk controller via device driver in OS \
* Device driver gives command, data transfer via DMA, device raises interrupt when done

Read and write system calls update the offset into a file olfse}
» After reading N bytes, next read will return the next set of bytes
* Can also update the offset from which to read/write using a seek system call

Every open file descriptor will read/write file as independent stream, with
independent offsets
* Exception: parent and child processes share same offset after fork




fd = open(“/home/foo/a.txt”)
char *buf = mmap(fd, size, ..)

Memory mapping a file ™.

_ buf[0] = ...
S buf[1] = ...
munmap(..)
!

 Alternate ways to read/write a file is via memory mapping

* mmap system call takes the file descriptor, size of data to memory map, and
other arguments, returns the starting virtual address of mmap region

* File data is read into one or more physical memory frames, which are mapped
at free addresses in the process virtual address space (new page table entries)

e Can access memory mapped file data like any other memory region
* With demand paging, physical frames can be assigned on-demand only when
mmap region accessed

* File can be memory mapped in private or shared mode
* Shared mode: changes to file are written to disk immediately, seen by others
* Private mode: changes to file are written to disk when memory unmapped




—
Disk buffer cache — I

* What happens after memory mapped file is unmapped? 4@[@/)

* Why erase file data, if some other process requires the data in near future?

* File data that is read from hard disk is retained in memory for some time in the
Whe = memory pages that cache recently read disk data

* Both mmap files and files read via read/write syscalls are cached

* Any changes to disk data (via write or mmap) is made in the cached copy of disk
buffer cache first, then written to disk later

e Write-through cache: changes written to disk immediately (synchronous writes)
* Write-back cache: changes written to disk after some delay (asynchronous writes)
* Write-back cache has better performance, but can lose data in case of power failure

* Benefits of disk buffer cache
* Improved performance due to fewer disk accesses
* Merge changes when multiple processes modify same file data

* Most OS allocate unused physical memory to disk buffer cache

* Some applications doing their own optimizations can bypass cache




CrU

Caches
Understand various layers of caches @

TLR (VA—PA

(dork budtor Gk

» CPU caches: stores recent memory instructions/data accessed by CPU

* TLB: stores recent virtual to physical address mappings done by MMU
* Disk buffer cache: stores recently accessed filesystem data in memory

* CPU cache and disk buffer cache store actual data, TLB stores mappings
e TLB hit avoids only page table walk, not actual memory access

* All caches use locality of reference to avoid extra work in future — 6 O
* Temporal locality of reference: data accessed in recent past will be likely used again
» Spatial locality of reference: data around current access will be likely used again \ - @ -

 All caches use some variant of LRU (least recently used) policy for evicting old
entries when cache is full



mmap vs. read/write syscalls

* mmap can be used for file-backed as well as anonymous pages
. T — T 5" Al
* Physical frame mapped into address space can be empty frame or with file data

 Memory mapping a file is an easy way to read file data
* Executable code, shared library code are memory mapped into virtual address space

* Memory mapping a file avoids extra data copies

* Read/write system calls read data first into memory (disk buffer cache), then copy
from disk buffer cache into user provided buffer

 Memory mapping a file copies file data into free physical frames, which are directly
accessed by user using virtual addresses
* Memory mapping allows reading disk data in large page-sized chunks
* Useful when reading/writing large amounts of data from file
* Not very efficient when reading files in wks



Data storage options in real applications

. Ec/al_s;g_rggg store data on local physical machine
* CPU caches (SRAM) — fast, expensive, small memory close to CPU (~1-10 ns)

* Main memory (DRAM) — random access memory for volatile storage (~100 ns)
Hard disk drive (HDD) — traditional magnetic disk, stores file data in blocks (*ms)
Solid State Drive (SSD) — faster option than HDD for files, common today
Non-volatile memory (NVM) — persistent memory, faster than hard disk

* Remote storage: storage accessible over the network in the cloud
~+ Network Attached Storage (NAS) — store data in reliable file storage appliances
* Databases —relational databases to store relational data durably
* In-memory key-value stores — stores data in key-value format, distributed over several nodes
* Distributed file systems — file storage built over a distributed system of nodes l
 Remote memory — DRAM-like memory accessible over the network

e Real comﬁuter systems use some combination of local and remote storage to
achieve the functional and non-functional (performance, reliability) goals of
applications




Summary

* In this lecture:
e Storing program data in memory, files

* Accessing file data using read/write vs. mmap syscalls
 Disk buffer cache

* Look up the amount of main memory in your system, and find out
how much of it is used as the disk buffer cache

* The “free” command in Linux will show you the total memory available in
your system, how much of it is used for the cache, and how much is free

* Programming exercise: practice accessing file data using read/write
system calls as well as using mmap



