Design and Engineering of Computer Systems

_ecture 15:
Optimizing memory access

Mythili Vutukuru
IIT Bombay

crdl — L cu b

Memory access: CPU caches L2
L%
* CPU fetches instructions/data from memory of process 2
e Faster memory access implies faster application performance Mo Y| X

* First step in a memory access: check CPU caches if data is present
e CPU caches store recently accessed memory in 64 byte cache lines
e Uses locality of reference to avoid expensive main memory access

* Multiple levels of cache, some private, some common across cores L L

* Memory location is cached in the private cache of one core CO, another core(7. L2

C1 also wishes to access the same memory contents = cache line is shared B
across cores via cache coherence mechanism m;/]

e Cache coherence protocol ensures consistent view of memory across cores
* But cache coherence mechanisms add overhead to memory access

CO Cl

/7
Optimizing cache usage (1) [/~ |

* Programmer can optimize code to maximize cache hit rates

e Align data structures to cache lines using language library primitives or

compiler hints | | | (@

 Store frequently accessed variables together in the same 64 byte cache line

* Write code such that working set size (frequently accessed code sections or
data structures) fit in CPU caches

* Write code to increase locality of reference (access data that is already in
cache as far as possible)
 Example: access matrix along rows rather than along columns
 Example: merge two for-loops that loop over same array

o
0&&%/#/ &@

TO /CO T/ /C |
Optimizing cache usage (2) S

* When accessinlg data from multiple cores, avoid cross-core cache
coherence traffic to make cache access faster

* Threads of program running on separate cores should access datain v T/
separate cache lines as far as possible

* True sharing: two threads read same memory address from separate cores *

* False sharing: two threads read separate memory addresses, but both locations are
on the same cache line

10 _’—t_ﬂ’x T/
: ye—F
* Both cause cache line to bounce across cores g

* Avoid shared data and lock contention between threads as far as possible
e Shared lock variable acmmle cores, cache line bounces across cores

« Recent research on locks which avoid sharing lock variables across cores Scalable Lo cas

* Lock-free data structures: data structure implementations that avoid locks using
clever tricks

Memory access: MMU, TLB, page fault

* If cache miss, CPU must fetch instructions/data from main memory

* MMU checks TLB for virtual to physical address mapping Y m
e If TLB miss, MMU walks page table to translate address P/ Mem
* Main memory is accessed using computed physical address LR ~

* TLB miss leads to extra memory accesses due to MIMU page table walk
e Optimizing TLB hit rate crucial, especially with multi-level page tables

* How to improve TLB hit rate?
* Limit Win memory, use few memory pages at any point of time
\L% * Huge pages: can use larger page size in order to have fewer page table mappings

W If OS has not allocated memory to a page, MMU traps to OS for page fault
* Servicing page faults may require multiple disk accesses to swap space
» Too many page faults: thrashing, too much time wasted in swapping to/from disk

e Avoid thrashing by limiting working set size, clearing up unnecessary memory %;D
Zornbie [[
—> [

Tips to optimize memory allocation/access

 DRAM allows random access of memory (jump to any address), but sequential
access of memory is better for performance -

"+ CPU p%(e/f(e_u:her Eredicts which memory will be accessed next (estimates stride length of
access) and fetches it into cache

e Sequential access of disk data is better for traditional hard disks
e Spinning magnetic disk has extra delays for random access

* Pre-allocation of memory is better than dynamic allocation via malloc
* General purpose malloc that does variable sized allocation can be slow @7}}3/?

* Custom memory allocators better than general purpose allocator in some cases
* Slab allocators are better when dynamic memory allocation is in a few fixed sizes Djj
* Store data in memory-mapped anonymous pages instead of heap

e Avoid copying memory contents unnecessarily —
 Memory mapping a file avoids copying file data from kernel memory to user buffer

* Later in the course: how to measure performance and identify which
optimizations are useful and which are not, via profiling code

P _ \(\/\MQCZD> i 0

Hree (P).
Common mem%r@related bugs

&

* Memory leak = memory is allocated via “malloc” or “new”, but not
explicitly freed by programmer via “free”/”delete”

* Wastes memory space on heap

* Dangling pointers = pointers to memory chunks that have been freed up

* Pointers to malloc memory after freeing it up, or pointers to stack variables after
function returns

e Accessing such pointers may lead to segmentation fault or incorrect behavior

e Avoid such errors with careful programming, or use language libraries that
provide automatic garbage collection via reference counting (keeping track
of pointers to allocated memory chunks)

 Example: shared ptrin C++ is automatically deallocated if all pointers are destroyed

- —

* Buffer overflow = overwrite stack content and corrupt stack
* Allocate buf[64] on stack, but read string longer than 64 bytes, overwriting data

e Other errors: misunderstanding pointers, not initializing memory, ..

- —

> uf (¢
7/

Summary

* In this lecture:
 How to make memory access faster
* How to avoid bugs around memory accesses

* Programming exercise: explore smart pointers (shared_ptr) and other
such reference counted pointers in C++

