Design and Engineering of Computer Systems

Lecture 16:
Filesystem Datastructures

Mythili Vutukuru
IIT Bombay

Recap of the course so far

* What are computer systems?

* Principles of designing computer systems
* Modularity, abstraction, virtualization, fixed size allocation, caching, ..

* Overview of system hardware: CPU, memory, I/O devices
* How OS runs processes on CPU, how VMM runs VMs
* How OS manages memory, what happens on a memory access

* This week: how OS manages I/O devices
* How OS stores files on hard disk or other secondary storage (filesystem)
* How data is sent and received through the network (network stack)

Recap of I/0 devices

* |/O devices: expose block storage (hard disk) or stream of Wﬂs_\

card, keyboard
_ Y) _ CPU_L me&v@(fm
* Device controller: microcontroller that manages I/O device 1
* Exposes various registers: c_md, status, data t I/O ’5 Qﬁ

* Device drivers reads/writes these registers to communicate with device

* Example: reading data from disk
* Device driver gives command to read via command register

* Device controller executes disk read on disk hardware, transfers data into main RAN -

memory via DMA, raises interrupt
* Device driver handles interrupt, processes received data

network cards)

093 /—\@fb%

—_—

~r~___~

)

DMA reduces I/O overheads, especially for high speed devices (disks, et

Filesystems

* File: persistent storage of user data on secondary storage (hard disks, ..)
* Traditional hard disk stores file data in fixed size blocks

W
* Filesystem: OS code that manages files on disk @ﬂgfﬁm P L
SUEsYELE N > THES
» User programs invokes system calls to access files: open, read, write OS + Cache

* OS implements system calls and performs operations on underlying disk data j d@/\ceo&w\
e OS system call implementation accesses blocks on device via Wr -
* OS also manages disk buffer cache which caches recently accessed disk blocks A K-

N

A filesystem is a specific way of storing and organizing file data on disk
* Many ways to organize data, many filesystems exist (e.g., ext3, ext4, FAT)

* This lecture: Data structures used in a simple filesystem

* Next lecture: Implementation of filesystem-related system calls

Index node (inode)

I

* Files are variable sized, split into flxed size blocks and stored non-
contiguously on disk

* Much like how memory image of process is split into fixed size pages
* Fixed size blocks avoids external fragmentation of disk storage

* For every file, index node (inode) keeps track of all the block numbers
(locations on disk) where the file data is stored

* Equivalent to a page table which keeps track of physical frame numbers

* Inode of afile is also stored in one or more disk blocks
* Much like how page table is stored in one or more pages hierarchically

* Inode stores all metadata about file (size, permissions, time of last
access/modification, disk block numbers of file data, ..)

Structure of inode

* Afile is uniquely identified by its inode number on disk
* An inode number uniquely identifies disk block containing inode on disk

e How are block numbers of file data blocks stored in inode?
* All block numbers of a file may not fit in one inode disk block

e Hierarchical method of storing block numbers in inode
* Inode contains the block numbers of first few blocks of a file (direct blocks)

* If direct blocks are full, inode contains block number of single indirect block, which
contains block numbers of next few blocks of a file -

* |f single indirect block is full, inode contains block number of double indirect block,
which contains block numbers of more single indirect blocks

* Triple indirect block can also be used for large files

* Not a symmetric hierarchical structure like page table

* Most files are small, so first few block numbers of a file are made available easily
without accessing multiple levels of inode

* Accessing a file from disk may require multiple disk accesses for inode

Limitations on file size

* Filesystem metadata imposes limits on maximum size of file that can
be stored on filesystem, maximum number of files, maximum disk
size that can be managed, and so on..

* Example: limit on file size imposed by inode structure

* Suppose inode can store K direct blocks, one single, double, triple indirect
block each

* Suppose single indirect block can store N block numbers, double indirect
block can store block numbers of N single indirect blocks, triple indirect block
can store block numbers of N double indirect blocks El@ O

-
7),

* Maximum file size = K+ N + N*2 + N~3 blocks
* Different file systems differ in these limits

Q(\/\O&Q//\z/f @
Directories « | L—
NI |

* Directory is also a special kind of file in Linux-like operating systems
* File type in inode identifies if regular file or “directory” file

* Directory is a “file” which contains special data: names of files or sub-
directories located within it, and their inode numbers

» Data blocks of directory store these mappings between names and inode numbers
* Inode of directory keeps track of these data blocks of directory

* How are filename—=>inode number mappings stored in directory data blocks?
* Can store fixed size records containing name and inode number | —| 53—
* Linked list, binary search tree, or other datastructures can be used to

* How to lookup a file in a directory?
* Fetch inode of directory, locate its data blocks, read data blocks

 Search for filename in data blocks of directory (traverse array/linked list/binary search
tree) and retrieve inode number of file

—

/%W/n@@ /&f' é><7[

Pathnames ﬂ @ % — 7)

* File identified in filesystem by its pathname: series of directories,
starting at root dir, leading to a file in the root filesystem

* When we want to open/read/write file, we need to find its inode
number (from which we can retrieve file data) using pathname

S

* Given a pathname of file, how to locate its inode number?
e Start with root directory inode (well known)

* For every element (directory) in pathname, read directory data blocks, lookup
next element filename in directory, retrieve inode number of next element

* Repeat above process recursively, until entire path name is traversed and we
find inode number of the desired file in its parent directory

Disk layout of filesystem

e What all does hard disk have?

» Data blocks of files and directories

* Inode (metadata) blocks of files and directories
* Information about which data/metadata blocks are free and which are occupied
* Overall master plan of disk is stored in the first block: superblock

* Free space management: how to know which blocks are free?

* Free list: superblock contains disk block number of first free block, which contains
block number of next free block, and soon.. —> |

 Bitmap: few blocks on disk contain bitmaps, one bit of information about each disk
block, whether free or not
 All this layout is done when a hard disk is “formatted” with a filesystem
» Different filesystems will have different layouts, formatted differently
 Maximum number of files, maximum disk size etc. depend on this format

igs) (node

OW\/
y ’
Q&

* When a file is opened, in-memory inode is cached from on-disk copy
* Quick access of file data block numbers as long as file is in use .

* Open file table: data structure used by kernel to keep track of open files
* One open file table entry created for every open system call

» Contains pointer to in-memory inode and other information about open file (e.g.,
offset at which the file is being read/written)

* File descriptor array: per-process array of open file table entries for files
that are opened by the process (part of PCB)

* When you open a file, open file table entry is created, its pointer is stored in file
descriptor array and index in array is returned as file descriptor/handle

e OS can locate file inode for reading/writing using file descriptor
* Disk buffer cache: LRU cache for recently read blocks from disk

* Next lecture: how all these data structures are used in implementing
system calls

Open file table r)jd&

: OF T :
* Every open system call creates new entry in open file table and file
descriptor array

* Suppose same file opened by two separate “open” system calls

* Will result in separate entries in open file table, and file descriptor array,
because offset of reading/writing is different

* Multiple open file table entries can store pointer to same inode of the file

* Exception: if parent forks child process, file descriptor array of parent
is duplicated in child process
e Parent and child file descriptor arrays point to same open file table entries
» Offset of file reading/writing are shared between parent and child
* Usually one of them should close the file for correct operation

Summary

* In this lecture:
* Introduction to filesystem in OS
* Inodes and disk layout of filesystem
* In-memory datastructures

* Find out the name of the filesystem(s) in the computer that you are
using. What are the most popular filesystems in use today?

