Design and Engineering of Computer Systems

Lecture 17/:
Filesystem Implementation

Mythili Vutukuru
IIT Bombay

Recap of filesystems D
frod, | 1)

* File data is stored non-contiguously on disk blocks, index node (inode)
keeps track of all block numbers containing file data

* Inode number of a file uniquely identifies a file in a filesystem

* Directory also a special file with mappings from filename to inode number
e Recursively traverse directories in pathname to locate inode number of file

* On disk layout of filesystem: superblock, data blocks, inodes, bitmap,..

* OS has many in-memory data structures to keep track of open files
* In-memory copy of inode (cached from on-disk inode)
* Open file table (list of files opened in entire system)

* File descriptor array (files opened by specific process, part of PCB) —
* Disk buffer cache (cache of recently accessed disk blocks) ’?d oFr T

'. fd = open(“/home/foo/a.txt”, flags)
oV L SYode
| write(fd, ..)
Open system call d ik
» Takes file pathname and other flags as input, returns file descriptor of file
* Traverse pathname in directory tree, find inode number of file

* Create a new file if one doesn’t exist (depending on flags given to open) = allocate J, 4} -
new inode, add mapping from filename to inode number in parent directory

Copy inode of file into memory from disk

Create new open file table entry, with pointer to in-memory inode

Allocate free entry in file descriptor array, store pointer to open file table entry
Return index of newly allocated file descriptor array entry

* Every process has 3 files open by default: standard input, output, error
(entries 0, 1, 2 in file descriptor array)

* Subsequent open files will get next free entries in file descriptor array

* Close system call deletes file descriptor and open file table entries

fd = open(“/home/foo/a.txt”)

char buf[64]

Read system call - read(fd, buf 64

* Input is file descriptor, user memory to read into, number of bytes to read

* Use file descriptor array index, access (agen file table entry, then inode
* Based on offset, identify which data block(s) of file to read using inode information huk (%fj

* Check if file data block(s) present in disk buffer cache
* If cache miss, device driver issues read command to hard disk, process is moved to blocked

\Q state, OS will context switch to another process Ca.chg D
\(& * When read completes, device controller will DMA the block(s) into an empty buffer in disk .
buffer cache, raises interrupt
* OS handles interrupt, marks process as ready to run, scheduler will switch to process in future Ckm}(

* Copy requested number of bytes from data block(s) in disk buffer cache into user-

provided memory buffer
* Memory mapping a file avoids extra copy from disk buffer cache to user memory

* User code resumes, system call returns number of bytes actually read, or error
* Actual bytes may be less than requested, e.g., end of file

Write system call

* Input is file descriptor, user memory buffer containing data to be written,
number of bytes to write
e Using file descriptor and inode, identify which data block(s) of file to write into

 If we are writing beyond end of file, file size expands, new blocks needed I\,——-—
* Allocate new data blocks for file on disk (update free list or bitmap) —7

* Add new data block numbers into file inode B/ l//
» Locate data block(s) present in disk buffer cache

* If not, Wata blopk(s) into buffer cache first
* Copy requested number of bytes from user memory buffer into data block(s) CaCh(iE — 7

in disk buffer cache, cached block is now marked “dirty” bt L -
» Write-through cache: synchronously write to disk immediately —
* Write-back cache: asynchronously update disk copy later Cod\é

» User code resumes (after delay in case of sync write, immediately for async write),

system call returns number of bytes actually written, or error
duot (7]

/&Mr(/Ot txt 7<

Lmlgrg and unlinking (z/l; %xy@:

* Same file can be “linked” from different directories with different filenames
using link system call
* When file created, it is linked to its parent directory for first time
* Subsequently, we can link to same file data from another directory also

* Hard linking: add entry in new directory, mapping new filename to old inode
* If file deleted from old pathname, can still access it from new pathname
* Link count of file in inode captures the number of such “links” to file inode

* Soft linking: add entry in new directory, mapping new filename to old filename

=

* If file deleted from old pathname, soft link is “broken” d ANt b +x1—

* Unlink system call: remove directory entry of a file from a particular directory
* |f thisis last “link” to the file, the file is deleted from disk

Crash consistency

* Every system call updates multiple disk blocks menm
* Example: when we append data to a file, we change data block, inode block, bitmap, ..

* All changes to disk blocks are first made in memory (disk buffer cache), then
written to disk (synchronously or asynchronously)
* Even metadata blocks (inode) are updated first in disk buffer cache

If power failure happens in the middle of a system call, memory changes will be
lost, disk can be only partially updated, may cause inconsistency in file data
* Example: new data block written to disk, but not added to inode (written data is lost)

* Example: new data block number added to inode, but data block contents not written (file
contains garbage data)

* Crash consistency: how to ensure filesystem is consistent after a power failure?

* Problem exists even with write-through disk buffer cache, but more prominent with write-
back cache

Filesystem checkers

bro
* Programming tip for crash consistency: always update data blocks on disk
first before updating metadata blocks - I3

* Better to write data block and not link from inode (lost data), rather than link from 74
inode first and fail to update data block (garbage in file)

* Even with above tip, inconsistency can still occur, especially when multiple
metadata blocks need to be updated
* Example: bitmap uEdated to mark data block as used, inode updated to add pointer
to data block, which metadata change to write to disk first?

* File system checking tools (e.g., fsck) check inconsistencies in metadata
blocks after reboot and fix the blocks to make them consistent
. Exa]\cmple: data block marked as used in bitmap, but not present in any inode, so mark
das 1ree

 What we want:_atomicity (all changes pertaining to a system call happen all
at once together or none happens at all)

o L\
Logging / journaling C%Q

* Logging/journaling: common technique for atomicity in systems
* Can be applied to guarantee crash consistency in filesystems also

* How to add logging to any filesystem?

* All changes to be made to disk blocks are first written to a log on disk, original
disk blocks are not touched

* After all changes are logged to disk, special commit entry written to log
* Next, changes are applied to the original disk blocks, log entries cleared

* If crash happens before log is committed, then no changes are made to any
disk block, it is as if system call never happened

* If crash happens after log is committed, but before changes applied to original
disk blocks, then log is replayed upon reboot and changes are completed

Techniques for reliability

e Secondary storage devices fail sometimes, and lose/corrupt some/all of the
data stored on them
* Logging protects against power failures, but not data corruption on disk

* Techniques to protect data integrity in the face of disk failures
* RAID (Redundant Array of Inexpensive Disks) uses multiple disks and

distributes/mirrors data across disks

* Checksum_is additional bits stored along with data to detect data corruption L___ch\k-)
checksum recomputed and compared against original value when retrieving data)

* Error correcting codes add additional redundant bits to disk data to detect or recover
from bit errors

* Snapshotting or taking backups of disk data periodically, can rollback to previous
snapshot in case of failures (copy-on-write technique used to make a copy of data

when it changes, preserving both older and newer versions) /:)

Modern filesystems

* Filesystem is a way to organize data and metadata on secondary storage

Many ways of organizations = many different filesystems

* Modern filesystems differ on following parameters

Maximum size of files, maximum disk space used (limited by size of metadata structures)

Performance vs. reliability tradeoff geatures like logging, checksums, coding, snapshots
Hurt performance butimprove reliability)

Optimizations specific to technology used in secondary storage (traditional hard disks vs.
SSD vs. non-volatile memory)

Optimizations specific to applications (storing general files vs. files of specific applications
with specific characteristics

Access to local vs. remote storage (local filesystems vs. network/distributed filesystems)

Support for compression, encryption, multi-level caching, and other advanced features

* No one size fits all, choice of filesystem depends on specific application

Virtual File System (VFS)

 Different filesystems can have different implementations of system calls
* A filesystem using logging/journaling may write to log first

* A different directory implementation (fixed size records vs linked list) will lead to a
different lookup function

* How to write filesystem code in a modular manner?
* Should be easy to change system call implementations and switch filesystems \/_]: S

 Solution: Virtual File System (VES)

®
* Defines a set of objects (files, directories, inodes) and operations to be performgdson (I’Y\P(
these objects (open a file, lookup filename in directory, ..) for various system calls]

* A specific filesystem implements these functions on VFS objects, provides pointers to bﬂDdL
the functions to be invoked by OS

* OS filesystem code is built in layers for modularity: VFS, filesystem nce
implementation, disk buffer cache, device driver 2 /N

Summary

* In this lecture:
* Implementation of file-related system calls
* Logging for atomicity and crash consistency
* VFS and layering for modularity

e Understand various system calls and how to use them (open, read,
write, link, unlink, ..)
* Many libraries available in all programming languages

