Design and Engineering of Computer Systems

Lecture 19:
Network I/O Implementation

Mythili Vutukuru
IIT Bombay

Recap: Socket API ® o
N

* Socket abstraction to communicate between two processes
* Unix domain sockets for inter-process communication on same machine

e TCP (connection-oriented) or UDP (connection-less) sockets for
communication across machines

* Socket API

* Opening a socket, binding it to an address (IP address+port number)

e Connecting (client) and accepting new connections (server)

* Sending and receiving data, for connection-less and connection-based
* Event-driven APIs for managing multiple sockets at a time

e Other: converting data from host format to network format and vice versa, ...

* In this lecture: how are socket system calls implemented in OS?

Overview of network communication
o J-) D

* Data is exchanged on a network in units of packets = sequence of bytes

 Communicating processes have unique network addresses
* Computers on Internet have IP (Internet Protocol) addresses -
* Multiple processes at one IP address are differentiated by port numbers

Every packet has sender/receiver |IP addresses, port numbers
* Network routes packets from source to destination using these addresses

* Machines on a network communicate using multiple protocols
* Protocol specifies which message to exchange with each other, format of messages
* Example: TCP+IP protocols used for reliable connection-oriented communication
* Example: UDP+IP protocols used for unreliable connection-less communication

Packet sent over network =‘@%Lc)ﬂj__(actual data sent by users) + protocol-specific

headers (IP address, port numbers, pther metadata) P
* User program reads/writes Bell_yﬂggd using socket API |
* Protocol processing, encapsulating/decapsulating headers done by OS
\/90 8

@Q

@ >0t

ers and queues H @MV\@

* Opening a socket returns socket file descriptor
* Index into file descriptor array of process, which points to open file table
* Open file table contains pointers to inode for files, socket structures for sockets, ...

* Socket buffer or sk_buff in Linux) is a kernel data structure to store
nétwork packets (payload + headers)

* Every socket has two socket buffer queues (transmit and receive queues) W\S‘g

e Send/write data into socket \ 1

* New skb is added to socket TX queue, payload copied from user memory into skb, O%
[

Socket bu

processes packet (adds headers) and transmits via device driver 2
 When packet transmitted over network and no longer needed, skb is freed o7

* Receive/read from socket)
o

* Dequeue skb from RX queue, payload copied from skb to user memory, skb is freed

* If socket RX queue empty, process blocks until: data received from network, OS
processes packet, adds skb to socket RX queue

Network device driver

N(C

Device driver maintains TX/RX rings of packet descriptors in main me
* Ring = circular array (loop back to start upon reaching end)
* Packet descriptor = pointer to socket buffer and other info about packet
* Head/Tail = pointers to start/end of occupied slots in ring
* NIC knows locations of TX/RX rings and can access it in memory

TX ring is queue of skb waiting to be transmitted
* Device driver adds skb to TX ring when packet is ready to be sent

* When NIC free to transmit, NIC reads address of next skb from TX ring, DMA packet from skb into
device hardware —

* When transmit complete, NIC raises interrupt, skb in TX ring is freed

RX ring is queue of empty skb waiting to be filled by received packets
* Device driver initializes RX ring with pointers to empty skb
* NIC receives packet, find empty skb on RX ring, DMA received packet into skb, raises interrupt
* OS handles interrupt, processes received packet, hands it over to corresponding socket RX queue N\C
* When received packet dequeued from RX ring, new empty skb is replenished by OS

Packet transmission ﬂﬂ UN

e Summary: TX/RX queues at socket, TX/RX rings at device driver

* How is a network packet transmitted@ Aot NIC
* Write/send system call allocatés new skb in socket TX gueue, copies data from

user memory into skb
* OS performs network protocol processing, adds headers to skb (/;(m

 When network protocol decides to send packet, OS adds skb to TX ring (note
that some network protocols may slow down transmission for congestion
control and other reasons)

* When device is free to transmit, DMA packet from TX ring into device, raise
interrupt when transmission complete

* OS handles interrupt, frees up skb in TX ring

Sogly_» .
¥ | &7
Packet reception T U Oﬁ/

* How is a network packet received? O (%‘I 5 dsren
* Device driver populates device RX ring with empty skb

* |f process makes read/recv system call before data is received, process is blocked

* When packet received, NIC performs DMA of packet into empty skb in RX ring, raises) [\\\ C
interrupt

* OS handles interrupt, performs minimal processing (e.g., acknowledge interrupt) in interrupt
handler (top half), schedules another interrupt handler process (bottom half) to run when
CPU is free

* Bottom half interrupt handler removes skb from RX ring, replenishes RX ring with fresh skb,
processes received packet, adds received skb in socket RX queue

* When recv system call returns, data copied from skb into user memory, skb freed up

* How is socket identified based on received packet?

* For connection-less sockets, receiver IP address/port number uniquely identifies socket
* For connected sockets,§_(e_r)_czl_e£/receiver IP address/port number (4-tuple) identifies socket

® o0 0 ® o @
(e

Optimizations to packet reception

* Receive-side processing of network packets split into top half and bottom half
interrupt handlers: why? — co ClI
* Top half does minimal processing, to avoid disruption to interrupted process

* Bottom half (soft IRQ) is separate process that is scheduled when CPU is free, does 7\ 7\
processing related to various network protocols

|
* One CPU core may not be able to keep up with interrupt processing on high O O
speed network cards (~100Gbps today) @ 7 7
* Receive side scaling (RSS) feature in NICs allows NIC to have multiple RX/TX rings (\I , C

* NIC splits received Eackets among multiple RX rings (packets of one connection are kept in
the same ring, use hash of connection 4-tuple to pick RX ring)

* Each RXring is assigned to separate core, interrupt handling distributed to CPU cores @
* Another optimization: NAPI (new API) to reduce interrupt load 77 <
* Once interrupt is raised, all future interrupts disabled till bottom half runs >,
* Bottom half polls all packets received until then, reenables interrupts < S @
@

S

0]

Performance tuning é) 5

* Multiple queues: socket TX/RX queues, device TX/RX rings (finite size)

 Mismatch in speed of network, NIC, OS, application can lead to queues
building up and overflowing, packet drops, poor performance

* If packets arriving at very high rate on NIC, but OS not handling interrupts fast
enough, device RX ring can overflow, packets dropped by device

* If application reading packets very slowly from socket, socket RX queue hits
maximum value, packets dropped

* If device too slow in transmitting, device TX ring and socket TX queue become full,
send/write into socket can block

* Best performance achieved when speeds of all components and queue
sizes are matched (more on this topic later)

* Sender must adjust sending speed based on capacity of network and receiver
* Socket queue size and device driver ring size must be tuned for optimal performance

Kernel bypass techniques U%gjv

* |/O subsystem in OS not designed for high speed network I/O, has inefficiencies: kb
* Interrupts, system calls for every packet, leads to expensive traps and context switches ﬁ
« Dynamic skb allocation for every packet, adds overhead _
* Packet data copied twice: device to skb, skb to user memory d,q/\/\c,e

* For high speed network I/O (~ 100Gbps), modern computer systems employ kernel
bypass techniques, e.g., Data Plane Development Kit (DPDK)

* Uses special device driver to access NIC, regular kernel processing fully bypassed ‘O (
* Packets DMA directly into userspace memory (zero copy) NS W
* Preallocate packet buffers in huge pages (efficient memory access)

* ‘Avoid interrupts, application itself checks RX ring periodically (polling) .Ce,
* Access multiple packets at a time from RX ring (batching)
k
NIC

* Disadvantages of kernel bypass: kernel isolation mechanisms and network stac
processing fully bypassed, regular kernel networking tools do not work

* Mainly useful in applications that process very high speed 1/0

Summary

* In this lecture:
* Socket APl implementation in OS
* Performance bottlenecks and optimizations

* Find out the size of RX/TX rings, default size of transmit/receive
socket buffer queues in your system, and how to tune them.

* Tools and commands exist in Linux and other OS to configure these queues

