Design and Engineering of Computer Systems

Lecture 2:
Principles of Computer Systems Design

Mythili Vutukuru
IIT Bombay

Principles of Computer Systems Design

* Computer systems are complex, with strict expectations
* Common design principles underlying the design of diverse systems

* This lecture: brief introduction to the common principles of computer
systems design
* Mostly common sense!

* Rest of the course: several examples of these design principles

* Understanding common principles and seeing common patterns
across systems will help designing systems on your own

Modularity

* Systems are composed of multiple independently developed modules
(“microservices”) which interact with each other

* Example: when e-commerce server displays a webpage to user,
information on the page is sourced from multiple modules
(personalized recommendations, offers of the day, sponsored

products, user’s shopping cart, ...) Yyecernmandadlion.
~
b e
e

pewseN —— gy [T Shefping Gass
h NM&%&&MW

§M1
Abstraction A % ®
tN\P(QIV\Q/\‘/‘CLHm
 Two modules interact via an API (application programmer interface)
* Need not know the implementation details, only interface

* Example: users write software consisting of sequence of instructions,
CPU hardware executes instructions

e |nterface: instruction set of CPU
e Software need not know how CPU executes instructions

SN Qolhoore — g@?/ 036 InShucHong

_ 7sa
CPU hwadwore nghuchone

| Mm O O Ofr
Layering o, Oo0- (5 I S8

* Modules organized into layers
* Lower layers implement a functionality, and provide a service to higher layers
* Higher layers use service from lower layers, build additional functionality
* Peers in a layer interact without worrying about other layers

* Example: web browser requests webpage from web server, web
server returns the response

 Higher layer: browser and server are peers, exchange web request/response
* Lower layer: routers and switches in the network forward data bits

YV T S b Sener
vesp &

%@NJM\'\[% @_______/O- . YO uters

\3(0&)\)%@» <

Virtualization

* One physical object, appears as multiple virtual objects
* Multiple users can use the object, without realizing they are sharing

* Example: multiple processes share a CPU on the computer, but each
thinks it is running exclusively on the CPU

* OS multiplexes multiple processes on same CPU

~—

* Example: multiple virtual machines on same physical machine
* |lllusion of multiple machines on one machine

2>~ P

C ru

O
I
Hierarchy ZOO -

* Smaller self-contained units at lower levels assembled into larger units
at higher levels of hierarchy

* Solve problem at a higher level first, then deal with lower level details

* Example: Internet addressing is hierarchical

* Every machine connected to the Internet has an address (“IP address”) of the
format: larger network identifier + smaller sub-network identifier + individual
machine identifier

* Message to a computer routed to bigger network first, then to smaller network

loxge Motk Tp o S hodt

T
Indirection -

* Insert an intermediate entity in a communication between two
entities, to hide details of a direct connection

* Assign a “name”, translate the name later to an address

* Example: Internet URL name resolution

* Web servers have an address (IP address), which ser must contact
* Browser requests a web page using a name (www.iitb.ac.in)
* DNS is a service that maps the name to server [P address

 Hides low level server address details from users

(jQ
— /

N

Parallelism

* Running multiple tasks in parallel for better performance

* Example: modern CPUs have multiple CPU cores, each running a
program in parallel

* Example: a web server has multiple replicas to process requests in

parallel
O (e / O Sex vers

0 O -

Concurrency

* Doing multiple tasks at the same time concurrently
* Related to, but different from, parallelism

* Example: multiple programs running concurrently on a CPU

* Multiple CPU cores can run multiple programs in parallel

* Or, multiple programs run concurrently on single CPU core (concurrency
without parallelism)

Pl o T
- AR ()
U J J

D OO O

| Cache
Caching () &

* Store frequently/recently used objects close by, for quicker access in
the future

* Example: memory hierarchy in a computer
* Program instructions+data stored in memory, fetched by CPU during execution
* Recently used instructions+data stored closer to CPU in CPU caches

Fixed sizing

» Use standard/fixed sizes of allocating resources, to avoid

fragmentation of resource

* Example: RAM (main memory) is divided into fixed size chunks called

o ’)
pages”.

* A program is assigned memory for code+data in granularity of pages

* Even if lesser than page size required, full page allocated

* Example: data is stored in granularity of blocks on disk

A

:

X

il

e

—_—

Indexing

* Collect metadata about data (information) in one place for easy lookup

* Example: index node (i-node) of a file
e Data of a file is spread across multiple blocks on disk
* Index node of a file stores information about all blocks of a file in one place

=

> }@

Separate state from computation

* Processing generates state. Store state separately from processor, so
that state can be saved even if processor fails.

* Example: web server stores user data in a database. Even if server
crashes or is replaced, user data can be accessed by another server

Replication

e Save multiple copies of state of a system, so that at least one copy will
survive failures

* Of course, care to be taken to ensure multiple copies are consistently updated

* Example: databases replicate user data in multiple locations for fault

tolerance

DD — copy 2

Logging

* Keep a record of all actions, so that any missed actions can be
completed later

* Example: when making multiple changes to data in a database, keep a
log of actions. If failure after doing some actions, can resume
remaining actions by replaying from log.

A A (=5)
.)5 B (+5)

-9

Unlearning

* Sometimes, if there is good reason, ignore the standard principles

* Example: ignore the principle of abstraction, use information about
CPU hardware (e.g., CPU cache structure) to optimize software
programs

Coltwone — Seq, & inshu

_ | 1SA
C\?UL Inehu Cleons

Summary

* This lecture:
 Common principles of designing computer systems \/
* Inter-related ideas, mostly common sense
* We will keep revisiting them throughout the course /

* Observe real life computer systems you interact with, and see these
principles in action

