Design and Engineering of Computer Systems

Lecture 23:
Transport protocols

Mythili Vutukuru
IIT Bombay

Transport layer P P

* |P layer provides host-to-host delivery of IP datagrams
e Packets can get dropped, no reliability guarantees

* Transport layer deals with process-to-process delivery of messages
e TCP (Transmission Control Protocol) guaranteeslg[iilg_e in-order delivery

. yﬂ{(User Datagram Protocol) does not guarantee any rMy

* SCTP (Stream Control Transmission Protocol) provides multiple reliable streams over
a connection

C
e Choice depends on application requirements

* Transport protocols run only at end hosts (end to end argument)

* Application layer writes messages into sockets, OS does transport layer processing,
send packet over network

* NIC receives packet, OS does transport layer processing, application reads message
from socket

C @ ¢ S

| Connect 3
TCP connection setup :ﬁb
Sy ar
* TCP is connection-based protocol \M

* End-to-end connection established between client and server
* |P routers on path not aware of connection, only forward datagrams

e Connection establishment via 3-way TCP handshake
» Server opens listen socket and waits to accept, client starts connect system call
e Client’s TCP sends special SYN packet to server
» Server replies with SYN ACK, client replies back with SYN ACK ACK
* Connect and accept system calls return after 3-way handshake completes

e After connection established, client and server can exchange data in both
directions of connection

* When data transfer done, send FIN and FIN ACK from each side to tear
down connection ‘—”

e UDP has no such concept of connection setup, just send packets directly

OCCep —

wrde
L4 K5

Transport layer segments .) (0

e Segmentation: message written into socket is split into chunks of MSS (maximum
segment size), headers added and sent over network
* MSS depends on underlying link technologies, which limit max packet size
* Message boundaries may not be preserved in segments (e.g., one message may span many
segments)

e TCP/UDP add source/destination port numbers to header, to help identif
different sockets (source/destination IP address is part of IP layer headerY

 How to ensure reliability? TCP adds sequence number and acknowledgment
number in hea‘déf_/—Y/ 200

o 100
» Sender puts sequence number of the starting byte present in the packet [::j Cj f)

* Receiver replies with sequence number of the next byte it is expecting fm 100 T a0

* Receiver’s ack is cumulative, and indicates that everything up to that sequence number has
been received

e TCP is bidirectional stream, each side sends a sequence number and ack number S

* Ack piggybacked with data in other direction, or sent in a separate packet - K&’—ZJ

* Other fields in TCP/UDP segment header: packet size, check sum

. [[? o) /j?
> [=)
-

* Should TCP sender wait for ack after sending every packet?
» Sending packet and receiving ack takes time, sender and network idle
* This design is called stop-and-wait, not very efficient, hence not used

* Instead, sender sends a window of W bytes before waiting for ack

e Sliding window mechanism: once ack comes for some packets,
window slides forward and more packets are sent

 Maximum number of unacknowledged bytes limited by window size W

e What value of W should be used? o

* Too large W, network/receiver can get overwhelmed, drop packets
* Too small W, not utilizing resources properly —

Sliding window

Sul ”)

j@b%zﬁﬁﬁ

Reliability 77/ :

. -
TCP sender transmits multiple segments, pauses if window is full

Upon receiving a TCP segment, receiver sends ack back to sender
* Ack sequence number is next in-order byte number expected
e QOut-of-order segments received are not reflected in ack number

When sender receives ack, window slides forward, more data can be sent

If a segment is lost, will result in duplicate acks from receiver (dupack
* Asingle dupack can also be due to reordering, so sender does not panic
* If 3 dupacks for a sequence number, sender infers loss, retransmits lost segment

What if severe congestion, all segments/acks are lost?
e Sender maintains a retransmission timer for every segment
e On timer expiry, timeout and retransmit everything
HEOMt

What if data received at receiver, but ack is lost?
* Sender retransmits segment unnecessarily, receiver identifies ?fdiscards duplicates

Receiver assembles segments, sorts by sequence number, delivers to app in order
NS~ —

Bandwidth delay productf -

* How to compute window size in sliding window protocol?

e Consider the following toy example
e Suppose network can send 1@&@/@ (bandwidth)

* Round trip time (RTT) is 2 seconds, i.e., it takes 2 seconds for a packet to reach
receiver and ack to come back

» After sender sends 20 packets (bandwi duct), the ack for the first packet
would have come back, and sender can send more
* |deal sliding window size = bandwidth delay product (BDP) of connection

* If window size > BDP, congestion in network
* |f window size < BDP, sender is idle
e But BDP is hard to estimate (bandwidth and RTT highly variable)

e TCP sender computes congestion window size (cwnd) using heuristics

~

) e
Congestion control / |
=

Ideally, sender sets cwnd to be BDP, but BDP is difficult to estimate

Instead, sender relies on feedback from network to adjust cwnd
* If packets are going through, maybe cwnd is below BDP, send more
* If packets are getting lost, cwnd may have crossed BDP, slow down
. IM is simplest form of feedback about congestion

()

* A simple congestion control algorithm to compute cwnd =i
* Start with cwnd =1 MSS R
* Initially, ramp up cwnd quickly, double cwnd every RTT (slow start) —

« After a threshold, be more careful, increase cwnd by 1 MSS every RTT (additive increase)
* 3 dupack, slow down, halve the value of cwnd (multiplicative decrease)
* If timeout, restart from beginning

Different TCP variants use different congestion control algorithms for different
types of applications, networks

* Approximate heuristics, no one best congestion control algorithm

Understanding congestion /j\«—s

 What happens inside a router?
* Look up destination IP address of received datagram, find next hop and outgoing link
 If outgoing link is busy, packet is queued up until it can be transmitted

 What is congestion?
* Network is a pipeline of links, the slowest link becomes the bottlenec
* Queue builds up at the head of the bottleneck link, in bottleneck router
. If.queue at bottlepeck router over.flows, packets agMggL .- S—
* Different connections may have different bottleneck links 160 Jo

e Can we detect congestion before it causes packet drop?
* Some routers can warn when queue starts to grow, before buffer fills up completely

 When queue size crosses threshold, Random Early Detection (RED) routers drop
packets with some probability, or set Explicit Congestion Notification (ECN) mark

* ECN-aware TCP can use these warnings to adjust cwnd before packet drop

End-to-end delay in the network
/1_,/—’———>

<
* On every link in the network path, a packet experience delays

* Transmission delay: time taken to put a packet onto the link

* Propagation delay: time taken for the signal to reach the other end of link

. Wy: time taken to process packet, look up forwarding table, ..

* Queueing delay: time spent waiting in queue at router / —_—
SSESlie R

* Round trip timgﬂ'l’;sum of all delays for both data packet and ack
* BDP = bottleneck link bandwidth X RTT

* Varying network characteristics across different networks
e Data center network paths have high bandwidth, low RTT (few milliseconds)

* Internet-wide network paths have lower bandwidth, higher RTT (tens to
hundreds of milliseconds)

° I S

Flow control

TR D@ R7

 What if network is fast, but receiver is slow?

* If receiver OS is slow to handle interrupts, device RX ring will overflow, packet drop
* If receiver application is slow to read from socket, socket RX queue will fill up

* TCP receiver indicates space left in socket RX queue in every ack (called receive
window size)

* Sender sets window size to be minimum of cwnd, receive window size

* Flow control: sender slows down in order to not overwhelm receiver
* Different reason for slowing down as compared to congestion control

* |deally, receiver must set socket RX queue size to be at least equal to BDP, so that
receive window is not reason for Iovgmut

* Network tools (e.g., iperf) run client and server on two hosts and report end to
end TCP throughput achieved

* If TCP throughput is low, but network is uncongested, can increase RX buffer size

Summary

* In this lecture:
* Transport protocols
* Mechanisms for reliability, congestion control, flow control

* Measure TCP throughput between two hosts (using tools like iperf).
Change receive window size and observe impact on TCP throughput.

