Design and Engineering of Computer Systems

Lecture 24.
Application layer protocols

Mythili Vutukuru
IIT Bombay

Application layer

* User applications (world wide web, e-commerce, video streaming, social
media, ...) exchange information over the Internet

* Application software is built using socket APl or other communication libraries

* Application layer protocols: a set of rules by which different components of
an application understand each other —

* Example: which messages should be exchanged and in what order, format of the /
message headers, ...

 Many application layer protocols are in use today
* Hyper Text Transfer Protocol (HTTP) developed for web, used in many other apps

e Simple Mail Transfer Protocol (SMTP) for email transfer

* Protocol only specifies how to communicate, not what data is exchanged
« HTTP can be used to exchange HTML web pages, images, videos, ..

Hyper Text Transfer Protocol (HTTP)

* HTTP developed to help web clients (browsers) and web servers (which host
websites) to communicate with each other

* Widely used in many other applications as well

* What happens when you access a web page? N(ﬂd Qe M /Cmnw [
* User types URL (Uniform Resource Locator = domain name+location of content) in the
browser’s address bar . <,
* Web server listens on port 80 (or 443 with secure HTTP) on a public IP address U

* Client obtains server IP address via DNS, opens TCP connection, sends HTTP request

e Server processes received request, sends HTTP response back via TCP
* Client browser displays (renders) HTTP response received (ans D

* Data exchanged between clients and servers consists of
* Web pages with HTML (Hyper Text Markup Language) content
* Images, multimedia files, and various other embedded objects in a web page

HTTP request

« HTTP request is the first step by client in request-response communication
* Can be used to fetch information (GET), update information (POST), ...
* Specifies the resource location at server which has to be fetched/updated
e Other header fields like user agent information, preferred language, ..
* Body of the request contains actual content (e.g., updated value in POST)

* A web page consists of multiple objects (main HTML page, embedde
images, style files, web page scripts to run at client side, ...)

* Once browser gets a response with content of one web page, separate HTTP GET]j
requests made for embedded objects in that page)D

* Persistent connections: client can retain/reuse same TCP connection for future HTTP
requests, instead of opening a separate TCP connection for each HTTP request

* Parallel connections: client can open multiple TCP connections in parallel in order to
fetch multiple web objects concurrently for faster performance

N4 B
= —

—

HTTP response

 HTTP response is returned by server in response to HTTP request
T TESPUTISE
* Contains status code indicating success or failure (200 OK, 404 server not found, ...) Statu ody

* Various headers, like type of content being sent, timestamps, ... M‘N’
* Body of HTTP message has actual content being fetched (by GET request) Corde AT

* Two ways of generating HTTP response at server

 Static response: already exists at server (e.g., image file on disk), simply transfer to client
-~

* Dynamic response: response to be computed and sent to client (e.g., user enters key words in
search, e-commerce web site has to search its product database and return response)

SR

HTTP is stateless: server sends response and forgets about client request
 How do websites track users? Using HTTP cookies (special data returned in HTTP response that

is sent in future HTTP requests to help identify the client) </
* HTTP responses can be cached in browsers or other caches in network (more later) e
HTTP respons ecify how long the item is valid in cache © o0 KiC

7 A cookie 7

/7
Web application frameworks NS

« Static content is typically distributed and served by CDNs

* Most web servers/applications today generate and serve dynamic content
 HTTP request contains user information (e.g., key words in searching e-comm products)

* Web server processes request, contacts several other application servers/databases,
and dynamically generates response (e.g., list of products matching search key words)

* Client-side scripts dynamically modify received response when displaying, in order to
enhance user experience (e.g., change display format of web pages)

* Web application framew ease development of web applications in
complex real-life computer systems

* In-built support for web servers, databases, and other required components

x

e Easy scripting for request parsing, response generation

e Support for a wide range of programming languages
* Tools to ease development of user-facing frontend, server processing at backend

* One thread per connection model vs. event-driven programming API

HTTP optimizations

HTTP evolved from popular version 1.1 to version 2, version 3, ..
HTTP/2 improves over HTTP/1.1 in several ways

 Efficient data transfer using binary compressed format (not text)
» Server can push objects that it knows client will need, even before client requests it
* Multiple streams over same TCP connection for multiple objects, with prioritization

Why multiple streams in same TCP connection?
» Effectively use TCP bandwidth in steady state, no overhead of multiple TCP connections
* Problem: if packet lost in one stream, all streams blocked due to in-order delivery of TCP

HTTP/3 uses new transport protocol QUIC (Quick UDP Internet Connections)

e Based on UDP, congestion control and reliability handled inside application

Other optimizations also used for web pages to load faster
» Redesign web pages so that important content comes first, page starts to render sooner

———

Data serialization formats

* Application layer data structures/objects need to be serialized into a stream of
bits in order to transfer in a message (e.g., as part of HTTP request or response)
» Also need to deserialize received bits in message into a structure/object

is popular text-based format to store data

e JSON (JavaScriﬂt Object Notation?
support for serialization/deserialization in many languages

structures, wit
 Example, received data str = {"name": “banana"”, “type": “fruit”, “color": “yellow"}
e Can be parsed into a structure iWﬁWf/
* Once converted into object, individual fields can be accessed (obj.name, obj.type, obj.color)

* Protocol buffers is popular library used for serialization of data structures
* User can define data structures (messages) which have various fields of different data types (

* Protocol buffers compiler automatically generates code to set/get various fields of message,
convert from message to output stream, convert from input stream to message —

* Application code can use these generated functions to access message objects
* Several such data serialization formats exist, in several libraries and frameworks /
\Z -

SUndex com Sy Lot

Email transfer via SMTP p Z» \@

5

Email is stored and retrieved from mail servers: server process listening on
well-known port (25), running software to manage email

* Users access mail servers via user agents, e.g., special email clients
* Webmail: user agents use HTTP to communicate with mail servers

* Simple Mail Transfer Protocol (SMTP) is a push-based protocol to push email
messages from user agent to mail server, or between mail servers

e Unlike HTTP which was designed to be a pull-based protocol

* Example: send email from userA@sender.com to userB@rx.com
e User agent of userA obtains IP address of mail server in sender.com via DNS

* User agent of userA opens TCP connection to mail server of sender.com, delivers email

via SMTP me
* Mail server of sender.com delivers email to mail server of rx.com via SMTP messages

* User agent of userB retrieves email from mail server of rx.com at a later time via IMAP
or HTTP or other pull-based protocols

Remote Procedure Call (RPC)

* Alternate way of thinking about client-server communication: clients access server
as if calling functions in local code (RPC software takes care of remote execution)

* Example: user wants to search products matching key words on e-comm website

e User sends key words in HTTP request, server returns HTTP response containing list of products
* Or, client invokes remote function at server like “search(key words)” and obtains response

* RPC libraries used to implement RPC in client-server applications g -

* Provide interface description language: client and server use common definition of
services/functions at server, messages to be exchanged as arguments to the function
* RPC library automatically generates client stub (serialize message, communicate with server

over sockets) and server stub (communicate with client over sockets, serialization of messages,
skeleton service implementation)

* User writes the actual application logic of the service implementation, which is invoked by the
RPC library when requests are received from clients

_//—‘
_
S

_—

RPC design choices

 Many different RPC frameworks available today (e.g., gRPC), with choices for
» Serialization/deserialization formats
e Communication mechanism (TCP, UDP), format of messages exchanged
 Whether RPCis blocking or event-driven

 RPC libraries need to handle network failures (unlike local function call)

* Some implementations try once to execute function at server and do nothing if failure, some
implementations try multiple times till function executed at server at least once

* Server code must be idempotent (ok to repeat execution of function) or RPC library must filter
duplicate requests for correctness (if not idempotent)

* Pros and cons of RPC vs. other application-layer protocols
* Client and server tied together more closely with RPC (need to agree on function names, number
of argumentsetc.), whereas other protocols have less dependency and hence more flexibility

* RPC can handle many different applications, instead of separate protocols for each

* RPC communication can be better optimized for specific application (e.g., no unnecessary
application protocol headers)

Summary

* In this lecture:
* Application layer protocols: HTTP, SMTP
e Data serialization in applications
 Remote Procedure Calls

e Capture packets passing through your computer while you access a
web page. Inspect the packets using a tool like Wireshark. Observe
the various HTTP headers in a request and response.

