Design and Engineering of Computer Systems

Lecture 26:
Multithreaded application design

Mythili Vutukuru
IIT Bombay

End-to-end system design

* What we have studied so far: building blocks for computer systems
 Computer hardware, OS, syscall AP| to user space processes
 How processes communicate over the network [o

//

* This week: end-to-end design of a computer system o

 Computer systems and applications are not monolithic, composed of
multiple components distributed across several machines

* Within a single machine, multiple threads or processes must
coordinate with each other to implement functionality
e This lecture: how multiple threads in a process work together
* Next lecture: how multiple processes in a system work together

CZ

Multi-threaded server bokn oo
AR
* Consider the example of multi-threaded web/application/TCP server
 Server has listen socket which listens for new connections

e Server has multiple connected sockets, one for each connected client
* One thread per connection design: main thread of server blocks on accept, per-client

threads block on client reads and handle client requests
55

* Use a pool of threads instead of creating/destroying new threads all the time

* Multi-threaded server using thread pool, or master-worker model

* Main master thread of server accepts new connections, places new connection file _— 5
descriptors (or requests) in a shared queue Y] —

* Worker threads pick requests from the queue one by one, and service them
* Mutual exclusion using locks when adding/removing requests from queue

 How does worker thread know when request has arrived in queue?
* All worker threads constantly keep checking the queue all the time? (inefficient polling)

Condition variables

. Threading libraries provide various mechanisms for threads to synchronize
and coordinate with each other efficiently

* Example: Thread T1 does some task (e.g., add request to queue), only then thread T2
does something else (e.g., process request from queue)

* Note that locks are not enough for such signaling

e Pthread library provides special variables called condition variables (CV) wdﬁ(&/)

e Athread can call wait function on a CV, it will block and get added to a list of threadsgw (@\/)
waiting on that CV |

* Another thread calls signal on a CV, one of the waiting threads gets ready to run again
e Example: use CV for “T1 does some work, only then T2 does something else”

T2
if(!done) wait(cv) ”" T1 [J/do work
LL2 blocks) done = true
N senaic) r
signal(cv) if(!done) wait(cv)

(T2 resumes)... - .- | //proceed, no wait

Atomicity in wait and signal

* Checking condition and waiting must be atomic, deadlock otherwise
* Thread T2 checks condition is false, context switch just before blocking
 Meanwhile T1 makes condition true, signal doesn’t wake up anyone (none sleeping)
* T2 resumes, goes to sleep forever (no one left to signal)

* Solution: use a lock/mutex to protect atomicity of sleeping

e T2 holds a lock, checks condition, calls wait, lock released only after T2 is added to
list of waiting processes (atomically check condition and sleep)

* T1 holds lock when calling signal, ensures that signal cannot happen in between
checking condition and waiting
T2
lock(mutex)
if(done) /%

A if(ldone) T2 wait(cv, mutex) @OQ{; rl9oned
(context switch) T1 lock(mutex)
11 //do work done = true
done = true signal(cv)
signal(cv) unlock(mutex) Qock MW

——>Wwait(cv) unlock(mutex)

Deadlock

* Deadlock: threads are stuck in blocked state without making progress
* Livelock: threads are running but doing wasted work, not making progress

* Example of deadlock: thread sleeps by calling wait on CV, no other
thread calls signal, so thread sleeps forever
1 ' LockA

: : . : T
* Example: circular wait when acquiring multiple locks — — 1 j4g
* T1 acquires LockA and LockB, T2 acquires LockB and LockA -
e T1 acquires LockA, T2 acquires LockB, each is waiting for second Iock

LockB]:2_

LockA
e Deadlock if executions interleave in some ways \
* Techniques to avoid deadlocks =
* Acquire locks in same order across all threads of process LockA lockB 2

 When sleeping, ensure someone will wake you up!
> LockB?? LockA?? < —

Producer-consumer with bounded buffer

* Producer and consumer threads, sharing data via a buffer of bounded S|ze

* Producers produce items, add into a shared buffer

* Consumers consume item from shared buffer § g § /7 g
 What kind of coordination is needed between threads?

* Producer thread cannot produce and waits if the buffer is full > Consumer signals after
making space in the buffer

e Consumer thread cannot consume and waits if the buffer is empty = Producer signals
after producing items

* Mutex/lock used while modifying shared buffer, in addition to two CVs

//Producer //Consumer

lock(mutex) lock(mutex)

if(no free space in buffer) if(no items in buffer)
wait(cv_buffer_full, mutex) wait(cv_buffer_empty, mutex)

produce item, add to buffer ‘ consume item from buffer
signal(cv_buffer_empty) signal(cv_buffer_full)
unlock(mutex) unlock(mutex)

7
Multi-threaded server design Tﬁ /éES

* Multi-threaded server with thread pool is a producer-consumer pattern

* Master thread places requests in a shared queue D
* Worker threads take requests from queue and handle them as needed g 5555

* How many threads in a thread pool? Optimum value to be tuned

* Too few threads: queue builds up, clients not served on time, server CPU cores under-
utilized due to not enough parallelism

* Too many threads: unnecessary overhead of context switches and memory use

* How is request processing handled by a worker thread?

* Run-to-completion: one worker thread handles client request from beglnnlng to end,
blocking across multiple steps 5® - - . - >

* Pipeline: worker thread handles one part of request, places it in queue for next stage

§ 6§ HD 956

Event-driven multi-threaded server

 What if event-driven API (e.g., epoll) used to handle multiple concurrent
clients at server? No need for one thread per connection
@P‘ﬂg s

 However, multiple threads still needed because
* Single threaded epoll server cannot effectively use multiple CPU cores =— —
 Single threaded epoll server cannot do blocking disk I/0O |

* Event-driven multi-threaded server design choices el ? HIH g §
* Multiple threads on multiple cores, each using epoll to manage multiple clients

* One master thread performs epoll, reads client requests, hands over requests to
thread pool of worker threads (which can block for disk 1/0)

 Whether using blocking APIs or event-driven APls, servers running on
multicore systems usually have multiple threads

e Understanding mechanisms for thread coordination (like CVs) is important

Summary

* In this lecture
 How to build multi-threaded servers
e Synchronization across threads using condition variables
e Concurrency bugs like deadlocks

* Programming exercise: extend a simple client-server socket program
by adding a thread pool at the server. Use pthreads condition
variables to coordinate across the master and worker threads.

