Design and Engineering of Computer Systems

Lecture 27/
Inter-process communication

Mythili Vutukuru
IIT Bombay

Multi-process application design

* Previous lecture: how multiple threads in a process work together
* This lecture: how multiple processes in one machine work together

* Application logic in a single system is often distributed across multiple
processes: why? ? I E

» Different processes developed independently by different teams
 Different programming languages and frameworks used for different tasks

* How do processes in a system communicate with each other?

* Inter-process communication (IPC) mechanisms, available via operating
system syscalls, allow processes to exchange information

&J% b Swer e oppheshn — > dakabie S,
Example: web application architecture

 Example: web application architecture composed of multiple processes

* Web server process handles HTTP requests/responses via TCP/TLS sockets
e Written in a language like C/C++ for high performance
* Returns responses for static content directly by reading files from disk

* Requests needing dynamic response are handled by application server

* App server parses HTTP requests, generates HTTP response according to the business
logic specified by user, sends response back to client via web server

e Scripting languages may be used for easy text parsing and manipulation

* Application server stores/retrieves app data in a database
* Local database, or remote database accessed by a local database client stub

» Several web application frameworks available to build web applications
* Developer freed from responsibility of setting up processes and IPC

IPC mechanisms g o

Nl

* Unix domain sockets: processes open sockets, send and receive messages

to each other via socket system calls

* Transmitted messa%es are stored in socket buffers, read by receiving process, no
transmission over the network involved for local sockets

» Message queues: sender posts a message to a mailbox, receiver retrieves 7 Py
message later on from mailbox P ——>(]]

* Pipes: unidirectional communication channel between two processes o = J[])— P2

* Signals: standardized set of messages sent to processes, e.g., pressing
Ctrl+C on keyboard sends SIGINT signal to running process

* Shared memory: same physical memory frame mapped into virtual address
space of multiple processes in order to share memory

* Different IPC mechanisms are useful in different scenarios

msgid = msgget(key, ...)

msgsnd(msgid, message, ...)

Message queues e e

* Message queues used for exchanging messages between processes
* Sender opens connection to message queue, sends message Sendoy — 7 -
* Receiver opens connection to message queue, retrieves message later on

e : . : . \C
* Message buffered within message queue / mailbox until retrieved by receiver ., on

* Example: IPC in web application using message queues
* Web server posts dynamic HTTP requests into message queue [TNEW

e App server retrieves requests and processes them A [l & QppSews:
* App server posts responses into message queue for web server /ﬂ >
* App server posts database requests into message queue (57 i
e Database client queries database and posts response to app server %” /é‘

_ mkfifo(name, ..)
— | int fd[2] fd0 = open(name, O_RDONLY)
" pipe(fd) //anonymous read(fd0, message, ..)
PI peS 75@ read(fd[0], message, ..) fd1 = open(name, O_WRONLY)

write(fd[1], message, ..) write(fd1, message, ...)

* Pipeis a unidirectional FIFO channel into which bytes are written at one M
read from other end I3

e System call “pipe” creates a pipe channel, with two file descriptors for two endpoints
* Pipe file descriptors point to pipe channel data structure via open file table

* Data written into pipe is stored in a buffer of the pipe channel until read

* Bi-directional communication needs two pipes

* Anonymous pipes created by “pipe” only available for use within process
* Example: Parent P opens pipe, P forks child C, P closes read end, C closes write end
* P writes into write end of pipe, C reads from read end of pipe

 How to use pipes between unrelated processes? Named pipes
* Named pipes opened with a pathname, accessible across processes
* One process accesses read end of pipe, another opens write end r
* Messages sent via write end file descriptor are read via read end file descriptor

Blocking vs. non-blocking [PC

* Same high level concept across sockets, pipes, message queues
e Sender sends message, temporarily stored in a buffer inside OS

* Receiver retrieves message later on from temporary OS buffer >/: 4
* Send/receive system calls can block —
* Sender can block if temporary buffer is full = _

* Receiver can block if temporary buffer is empty

* Possible to configure IPC to be non-blocking (e.g., set socket options)

* Send/receive will return with error instead of blocking

Signhals

 Signals: a way to send notifications to processes, used between processes,
or between OS and process

 Standard signals available in operating systems, for example:
» Signal to interrupt (SIGINT) via Ctrl+C

* Signal to kill (SIGKILL), signal to stop (SIGSTOP), user defined signals, ... P 1 /—7 P
* How are signals sent? kew [preen ID, Gignal v

* System call “kill” can be used to send any signal from one process to other (with O S
some restrictions for isolation and security)

* Signals can also be generated by OS, e.g., when it handles Ctrl+C keyboard event

* Signal handler: function executed by process to handle a signal Sigred — handl,

* When signal arrives, process execution flow interrupted, signal handler executed
* Default signal handlers exist (e.g., terminate when Ctrl+C), can be overridden —

shmid = shmget(key, ..)
char *data = shmat(shmid, ..)

_

Shared memory

* Processes in a system do not share any me@ry by default
* Child process gets copy of parent memory image, modifies independently

* Shared memory: a way for two processes to share physical memory

e Same physical memory frame mapped into virtual address space of multiple processes
(possibly at different virtual addresses)

* Page table entries in page tables of different processes point to same frame
e Shared memory “segment” identified by a unique key

* Process can request to map or “attach” a specific shared memory segment into its virtual
address space by using key

 Once mapped, shared memory segment can be used like any other virtual memory

* Processes may need extra mechanisms for coordination besides shared memory
e E.g., when producer writes into shared memory, how does consumer know?
e E.g., how to avoid concurrent/inconsistent updates to shared data in shared memory?

Summary

* In this lecture:
* Mechanisms for inter-process communication

* Programming exercise: write code using any of the IPC mechanisms
discussed in this lecture. Send a message from one process and
receive it in another process.

* Programming exercise: write a simple program with a new signal
handler for Ctrl+C signal (SIGINT), which will print a message before
terminating.

