Design and Engineering of Computer Systems

Lecture 28:
Multi-tier application design

Mythili Vutukuru
IIT Bombay

(lionk /ﬁ%ﬁ /WWW*“L??D@
Multi-tier applications " I opp —a
end

* Real-world computer systems are built as multi-tier applications
e Multiple components/tiers distributed across several machines

* High-level architecture of a multi-tier application
e Clients access applications hosted in organizations or public clouds

* Front-end components (e.g., web servers) receive user requests, reply to user with
responses, consult various application servers to build responses

* App servers contain business logic to process different types of user requests
* Application data is stored in several database servers in the backend

 Example: e-commerce application has front-end web server, multiple

application servers to handle different functions (e.g., product search,
shopping cart, purchases), and multiple databases (e.g., product catalogue,

user profile, order history)

Decomposing applications into components

* Why to build applications in modular (not monolithic) design?
* Easier to design, develop, optimize smaller components
e Easier to replace/gg&de components without bringing down entire system

* General guidelines to modularize applications (not hard rules)
 |dentify what functionalities the system should provide @

 |dentify what application data to be stored to satisfy functionality

* Encapsulate one type of data and functions on data into one logical component
(e.g., one component for product catalogue and related functions) AP T

« Each component / application server can be further decomposed into multiple
micro-services (processes/threads) for separate functions/features —— [

 Components interact with each other via well-defined interfaces or AP|SW
need to know the internal implementation details —

Example: functional requirements

* Functional requirements of a simplified e-commerce system
* Maintain user authentication and profile information, billing details
 Add products to catalogue, search with keyworkds
* Add items to shopping cart, view shopping cart
* Checkout, billing, shipping of items
* Keep order history, support cancellations and returns
. Wd future purchases based on past history

-

e

—_—

* Group together (app data + functions on data) into one component

* Product catalogue, add/search/buy/return products @

» User profile database, add/delete/authenticate/modify user data

Example: modular architecture of iy
e-commerce application

Component Data maintained Functions / microservices

User profile User information, password, billing info, shipping Add new user, authenticate login,

address - update info, delete user
Products Catalogue of products available Add products (used by supplier),
search by keywords, buy, return
Shopping cart Shopping cart for each user Add item, delete item, view cart
Orders For each order placed, details of items purchased Create new order (from shopping cart),
in that order, billing and shipping information billing for order, shipping and tracking
of order, retrieve order history of user,
cancellations and returns
Recommendations What products to recommend for eachvuser Retrieve recommendations

based on past history of purchases

Application data storage options

* Relational database management systems (RDBMS)
e Store structured data in the form of relational database tables with strict schema

%@v * Provide strong guarantees (ACID — Atomicity, Consistency, Isolation, Durability)

* Support for transactions (complex operations spanning multiple tables)

* NoSQL data stores: for unstructured data (e.g., key-value stores) or semi-
structured data (e.g., document stores) or specialized data (e.g., graphs)

* Dynamic or flexible schema, no strict consistency guarantees or transaction support :]

e Easier to scale, better performance than RDBMS
* In-memory only for transient data, disk storage option if persistence needed h
1SR SLOTABE §

* Many data stores available, choice depends on type of data in app server

» User profile data stored in RDBMS, shopping cart stored on NoSQL key-value store

ser profile dat
* Data moves from one data store to another as it is processed

* User clicks on videos stored temporarily in NoSQL, aggregated and stored in RDBMS

API| design: REST wd \
/ > WPP

* Front-end, app servers, backend components interact over well-defined
interfaces or APls: how to design these? —

* REST (Representational State Transfer): popular way to design APIs = -
Reuse HTTP client-server mechanism for data beyond web pages Ger 15T —
* Data stored in a component represented as URLs (e.g., /user/foo/profileé/address)

e Data can be created, updated, read, or deleted (CRUDTVla different types of HTTP
requests (GET, POST, . ;

e App data exchanged via standard serialization formats (e.g., JSON) over HTTP
* Easily implemented by existing HTTP frameworks /’—>
e Responses can be cached like web content fetched over HTTP

* What do clients use to communicate with front-end servers?
e Standard application layer protocols, e.g., HTTP, SMTP
 REST-based APIs, e.g., accessing mapping service from mobile app

API| design: RPC

 REST-based APIs are popular but may not be suitable in all cases
* Not easy to represent all data in a component as URLs ce/ Oydg/\, —
* Cannot do all actions using fixed set of HTTP verbs (GET, POST, ..) ﬁ
e REST (HTTP) is stateless, no dependence on previous state of data allowed
* Example: “cancel” order API not easy in REST, need to do action depending on state

(whether confirmed or not) of order, HTTP DELETE verb is not suitable

* Alternate way of designing APIs: use RPC frameworks C > S

 Components interact and exchange data using remote procedure calls —

e Can customize interface: messages exchanged in requests and responses between
client and server, function/services provided by server

* Needs ordinati ween client and server, not suitable for external facing
interfaces, more useful for inter-component interactions within system

D Gressolf 2 Su
PN

>) ﬂ
API| design: pubﬁﬁ— scribpe (.~ >

 RPC and REST are client-server model: one component (client) sends a

request and waits for response from server to proceed ovdan > VeCorvmandsy,
* Some interfaces need more asynchronous interaction, for example: ‘
* Server making purchases pushes order info to recommendation server, no response is
expected. Recommendation server runs algorithms asynchronously on orders to come
up with recommendations for user.
* User uploads video to video upload server, which pushes video to another server that
converts video into various resolutions later on asynchronously

 Such interactions between components are called publish-subscribe model,
happen via frameworks called message brokers or task queues

« Some components publish information to a task queue, other components subscribe
for this information and process it

e Subscribers can subscribe to specific topics selectively

* Message brokers provide temporary storage of messages, high performance reliable
message delivery using network protocols

Summary

* In this lecture:
* How to design multi-tier applications
* Design choices for data storage, APIs

 Work out an end-to-end design of any computer system you use in
your day-to-day life. Think through what are the functional
requirements, how to modularize, what kind of data stores you will
need, and what kind of APIs will be appropriate.

