Design and Engineering of Computer Systems

Lecture 3:
Overview of CPU hardware

Mythili Vutukuru
IIT Bombay

Cru ¢ code. |
T dat

e User program = code (instructions for CPU) + data RAM

CPU hardware

* Stored program concept

e User programs stored in main memory (RAM)
* CPU fetches code/data from RAM and executes instructions @ /j

* CPU runs processes = running programs
* Modern CPUs have multiple CPU cores for parallel execution D D

e Each CPU core runs one process at a time each

* Modern CPUs have hyperthreading, where each core can run more than one
process also

Instructions and registers WC—>

e Every CPU has

* A set of instructions that the hardware can execute
* Aset of registers for temporary storage of data

* Defined by ISA = Instruction Set Architecture
e Specific to CPU manufacturer (e.g., Intel’s x86 ISA)

* Registers: special registers (specific purpose) or general purpose

* Program counter (PC) is special register, has memory address of the next instruction
to execute on the CPU

* General purpose registers can be used for anything, e.g., operands in instructions

* Size of registers defined by architecture (32 bit / 64 bit)
* 32-bit PC can store addresses of 2432 = 4GB of memory

PC
. . R
CPU Instructions ; Code
Eﬁ Ao
 Some common examples of CPU instructions TQQO >

* Load: copy content from memory location =2 register
* Store: copy content from register 2 memory location

 Arithmatic operations like add: regl + reg2 - reg3 R AN

* Logical operations, compare, ...
* Jump: set PC to specific value \
 Simple model of CPU

* Each clock cycle, fetch instruction at PC, decode, access required data, execute,
update PC, repeat 5

* PCincremented to next instruction, or jump to specific value

. Many optimizations to this simple model
* Pipelining: run multiple instructions concurrently in a pipeline
* Many more in modern CPUs to optimize #instructions executed per clock cycle

- D C

—

~—

——

. CPUL
Running a program fc e

e 2
* What happens when you run a C program? Ranm
* Ccode translated into executable = instructions that the CPU can understand
* Translation done by program called compiler
Executable file stored on hard disk (say, “a.out”)
* When executable is run, a new process is created in RAM
* Memory image of process in RAM contains code+data (and other things)
* CPU starts executing the instructions of the program

* When CPU core is running a process, CPU registers contain the
execution context of the process

* PC points to instruction in the program, general purpose registers store data
in the program, and so on

Concurrent execution

. //—\
e CPU runs multiple programs concurrently Y ‘ >~<@N€ r
* Run one process, switch to another, switch again, ... C@%{L@Q
* How to ensure correct concurrent execution? \(egwa 5% Pl
* Run process P1 for some time ? \

* Pause Pl,Womewhere in memory (more later)

Jaus
* Load context of P2 from memory

* Run P2 for some time QW \JFOL\
* Pause P2, save context of P2, restore context of P1, switch to P1 P l—

e Every process thinks it is running alone on CPU
e Saving and restoring context ensures process sees no disruption

* Operating System (OS) takes care of this switching across processes
e OS virtualizes CPU across multiple processes

Pl Shwe combexk
Pl
w%/&%/ W@ué /%

(At
* In addition to running user programs, CPU also has to handle external

events (e.g., mouse click, keyboard input)
* Interrupt = external signal from 1/O device asking for CPU’s attention

Interrupt handling

* How are interrupts handled?
* CPU is running process P1 and interrupt arrives
* CPU saves context of P1, runs code to handle interrupt (e.g., read keyboard
character)
e Restore context of P1, resume P1

* Interrupt handling code is part of OS
* CPU runs interrupt handler of OS and returns back to user code

Isolation -
s

* How to protect processes from one another?
* Can one process mess up the memory or files of another process?

Modern CPUs have mechanisms for isolation

Privileged and unprivileged instructions
* Privileged instruction = access to sensitive information (e.g., hardware)
* Regular instructions (e.g., add) are unprivileged

CPU has multiple modes of operation (Intel x86 CPUs run in 4 rings)
* Low privilege level (e.g., ring 3) only allows unprivileged instructions
* High privilege level (e.g., ring 0) allows privileged instructions also

*_User code has unprivileged instructions, runs at low privilege level
* CPU does not execute privileged instructions when in unprivileged user mode

* OS code has privileged instructions, runs at high privilege level

* When user program wants to do privileged operations, it must ask OS
* CPU shifts to high privilege level, runs OS code, returns to low privilege, back to user code

d
CPU caches 'Y lm @m{m

* CPU must access memory to fetch instructions, load data into registers
* But main memory (DRAM) is very slow (100s of CPU cycles)
* CPU cannot do useful work while waiting for memory

* To avoid many memory accesses, CPU stores recently accessed instructions

and data in CPU caches @ C |
* Multi-level cache hierarchy, some private to cores, some common ||
* Example: private L1, L2, common last level cache (LLC or L3) L 2

* Can be separate for instructions and data, or common (e.g., L1 is separate) Jj@

* Caches have low access latency (tens of CPU cycles), faster than DRAM but
smaller in size, more_expensive
e Can only store most recently used instructions and data

D
Reading into cache @bff%/ : 3

* Memory content fetched into cache in size of cache line (64 bytes)

* When CPU requests contents at address X, 64 bytes around X are fetched

* Why? Memory around recently accessed memory is most likely to be
accessed in near future = spatial locality of reference (e.g., accessing array)

* Which level of cache hierarchy is data read into? O Y
* Inclusive cache: fetched into all levels of cache —7 LI X LLz | 2

* Exclusive cache: fetched into lower level of cache L2 X
* What if cache is full? \rmm:/
* Least recently used (LRU) cache lines are evicted into nex cache

* Why? Most recently used memory is most likely to be accessed again in near
future = temporal locality of reference (e.g., for loop)

CO 4~ > C|
Writing into cache e M @
g /N
* CPU writes into cached memory, makes it dirty /
 Dirty cache line = different from original copy in memory
* When is dirty cache line written back to memory? | L

* Write through cache = written immediately
* Write back cache = written later (more efficient) 1. A

. Wmcache line in private cache of one core needs to be
accessed by another core?

* CPU cores exchange modified data with each other

* Cache coherence protocols keep CPU caches in sync with each other
and with main memory

Summary

* In today’s lecture:
* Multiple CPU cores run programs in parallel \/
e Instructions, registers (ISA) ./
* Fetch-decode-execute
* Concurrent execution, interrupt handling, save/restore context \/
* Privilege levels v
e CPU caches .~

* Find information about your own CPU: which architecture? How
many cores? What processes are running in your system?

* Use Linux commands like “Iscpu” and “top”

o

