Design and Engineering of Computer Systems

Lecture 31:
Performance measurement

Mythili Vutukuru
IIT Bombay

Performance engineering

e So far in the course: how computer systems are developed

* This week: performance engineering
* Measuring and optimizing performance of computer systems

 How is performance measured? What to measure, how to measure, what are
parameters we can change, what output metrics should we observe, ..

* Performance analysis: simple back-of-the-envelope calculations to make
sense of the performance measurements

Identify performance bottlenecks, which component is slow, and why

Techniques to optimize performance: within a single machine and across the
entire system

Sromt .
s o PP

Example: multi-tier web application - ”
p
Y
e Consider a multi-tier application (many examples seen so far)

* Front-end web servers, multiple application servers, backend databases
* Clients make requests, processed by system, responses sent back

* Incoming traffic into the system can be measured using: Q@ﬂﬂ
* Number of concurrent clients connected to the system
* Incoming rate of requests per second
* Mix of various types of requests in the incoming traffic

~—

* Performance of the system measured by (average values of):
 Throughput: number of requests per second handled successfully

* Response time / RTT / latency / delay: time taken by the system to return
back a response to a client request (varies by type of request)

7 Opp

Performance bottleneck

* The performance of a system is limited by the sl_o_vgeﬂs_\
system (bottleneck) N

* Consider a web application servicing one type of requests

* Front-end can serve 1000 req/s, app server can handle 5000 req/s, backend database
can process 100 req/s

* Max throughput of the system is 100 req/s (capacity)

e Database component will be the performance bottleneck and will be fully occupied
at peak input load (other components will not be as busy)

» Database component takes approx. 1/100 seconds = 10 milliseconds to process each
request (service demand)

* Response time of system will be at least 10 millisecond + time needed at other
components

* Sometimes, the network can also be a bottleneck, not any component
e Some switch on path between clients and server can only forward 50 req/s

10
__lovegl

Understanding system performance
["/

. o . 190 reg, S
» Consider web application with max throughput (capacity) 100 req/s '
» Suppose incoming traffic into system is only 10 req/s | AN /
* The system throughput is M, no performmeneck : (oA
* No component overwhelmed, quick (low) response time /ITW o
* As incoming load approaches capacity, e.g., 90 req/s - S - L

* All incoming requests are served, throughput is 90 req/s
* Bottleneck component starts to get busy, queue builds up, responses take longer

* If incoming load exceeds system capacity
* Bottleneck component fully saturated, max throughput (capacity) achieved,

throu s (cannot increase any more)

* Response times are higher due to queueing delays, continue to increase with
increasing load

Understanding overload

* What happens when incoming load to server greatly exceeds capacity?
* Throughput flattens, cannot increase beyond bottleneck capacity
e Response times keep increasing as requests get queued up at bottleneck (high

queueing delay) I _47® =
* App software cannot process requests, returns error messages (e.g., HTTP server
returns code of “503 service unavailable” if it is overloaded)

-

 TCP sender does not get acks, terminates connection (socket syscalls fail) Zj

* Networking routers/switches/NIC may get overloaded, packets fill up queues
inside router or device driver, packet are dropped

* Result of overload: very high response time (for requests that complete)
or errors (requests get no response at all, or get error messages)

Ra
Understanding saturation g

X

e

—I_M(

* |deal operating point of a system: just below max capacity or saturation

e Close to max throughput, not too long response times, no errors

e At saturation, some hardware resource at bottleneck is fully (100%) utilized

e E.g., all CPU cormWre CPU cycles
e E.g., hard disk is running at full capacity performing reads/writes

* How to improve capacity?

* Increase hardware resources at bottleneck component
* Or, optimize system to use hardware resources more efficiently

* Sometimes, bottleneck due to s issues only (no hardware resource is

fully utilized)

e E.g., maximum number of file descriptors opened by process, cannot open any more

* E.g., threads wasting time waiting for locks, even though CPU is free
* Such issues can be fixed by rewriting code or tuning OS parameters

90

Performance: parameters and metrics

e Given a computer system (with certain capacity and configuration of various
components), how to measure its performance?

* Input parameters on which performance depends / incoming load wf - —

* Number of concurrent users/requests in the system W\E}Y‘

 Rate (requests/sec) of incoming traffic

* Mix of various types of requests (which require different amounts of work) >
* Performance metrics / outputs measured Loold

* Throughput of the system (averaged over a time window, end-to-end and per-hop)
* Response time or latency (averaged, end-to-end and per-hop)

. Wf various resourcgs at components, especially bottleneck (averaged)m/qw
* Various kinds of errors and failures (counts)

 Load testing of a system: vary incoming load, measure performance

Types of load testing

* Different types of load tests based on which input parameter is vari?d .
. . . . 0
* Open loop load testing: vary rate of incoming traffic into system L/

. GeneraFeE/rgg@ for incrggsing values of N (mix of requests can also be varied))/00>
e Can be implemented by firing a request every 1/N second 007

* Closed loop load testing: vary number of concurrent users of system

* N concurrent users, each user sends a request, gets response, waits for some S
amount of time (“think time”), sends next request N >

* Can be implemented by having N threads/processes emulating N concurrent-users =

* Both techniques are valid ways of varying input load of system w3
M

* Open loop testing can lead to higher number of concurrent users, more que

* Load generators: software programs or hardware appliances that generate
load to test a computer system in open/closed loop manner

* Provide knobs to vary rate of requests, or number of concurrent users etc.

I

Running a load test | Sypm

* How to run a load test

e Setup load generator, system under test and connect them suitably

e Generate increasing amounts of load from load generator to system (by varying rate of
incoming traffic or number of concurrent requests)

 Measure output metrics (throughput, response time, errors, utilizations) for each value
of input load

* Eliminate sources of non-determinism (e.g., pin threads to CPU cores)
* Ensure load generator or connecting network is not the bottleneck

e Results of load test: performance metrics vs. incoming load

* What after load test? Performance analysis and engineering
* Analyze and understand performance metrics, identify bottleneck@
d

e Optimize system, repeat load test
e Stop when system performance meets the expected incoming loa

Summary

* |n this lecture:
 What is performance: input parameters, output metrics
* How to measure performance

* Programming exercise. Setup a simple web server using the freely
available Apache server. Apache JMeter is a load generator to test
web servers. Try to run a simple load test using JMeter.

