Design and Engineering of Computer Systems

Lecture 32:
Performance analysis

Mythili Vutukuru
IIT Bombay

Performance analysis

* Workflow in building computer systems
e Design and develop system components
* Run a load test, measure performance (throughput, response time, errors, ..)
* Understand if the performance is reasonable or can be improved
* Tune system to improve performance if required, measure performance again
* |terate until satisfied with performance

* In this lecture: a very high-level overview of performance analysis

 What do we expect the performance measurements to look like? Use simple
back-of-the-envelope calculations to estimate expected performance

* Are the measured performance numbers in line with our expectations?

* We only cover high level concepts and intuitions, no theory / math

» Take a course on queueing theory for a more rigorous treatment of the topic

Open loop load testing

* Consider a system with capacity = C req/s (service demand at bottleneck="1/C)
* Open loop load test: varying rate of requests into system (R req/s)

* Measured throughput
 If R<C, throughput = R (all incoming requests will be eventually served)I
e For R>=C, throughput will flatten at C req/s

/

i | r

* Measured response time c

 If R<C, response time is fairly low (time to serve request at all components + small amount

of queueing due to randomness of arrivals)
* As R approaches C, response time increases exponentially (high queueing delay)
* If R>>C, response time goes to infinity, requests fail, server crash P

e |f R<C, utilization is approx. R/C (proportional to incoming load)
* |f R>=C, some hardware resource at bottleneck is at 100% utilization

 Utilization of bottleneck component | | | m‘b%ﬂ”D / '

| >

Closed loop systems

Consider a system with capacity = _(ire_qu (service demand at bottleneck="~1/C)

Closed loop load test: varying number of concurrent users (N) %
* Think time = time between user getting response and making next request Hank V\FCQE/

* Turn around time of a user = response time from system + think time
diLIa FOTIC, ELFNE >Sponse tim nink tim

What happens for low values of N?

* If no think time, small number of users can quickly generate requests back-to-back to keep the
bottleneck fully utilized
* With non-zero think time, bottleneck component idle when all users are “thinking

* Low throughput, low response time, system poorly utilized

* What happens for large values of N? E
<\ / * Bottleneck has enough work all the time, fully utilized
& * Throughput flattens at saturation capacity C req/s [,\/> %
— * Response time increases due to queueing of user requests at bottleneck D

\& * Increase in response time somewhat linear with N (queueing due to extra users)

0 0]

0
Optimum value of N M@@@’@ "

|0 Sec

* What is the optimum value N* for number of concurrent users?
 Minimum load level to fully saturate the system, but not much queueing

* Example to understand how to compute N*
» Consider system with capacity 100 req/s (service demand at bottleneck = 0.01 seconds)
» User generates request every 10 seconds (turnaround time = response time + think time) @
* One user keeps the bottleneck component busy for 0.01 sec for every 10 seconds
* Approximately 10 /0.01 = 1000 users needed to keep bottleneck fully occupied

-@= turnaround time / service demand at bottleneck mou\mm/

e |If number of concurrent users in load test N < N*
e System under utilized, throughput below capacity Sea e OQQ/W\QL&\@

* If number of concurrent users in load test N >= N*
» Bottleneck fully utilized, throughput flattens, response times increase

e This intuition of closed systems useful in many other scenarios as well...

@\‘#\/\‘/\/4\/
00| l e

Optimum number of threads in thread pool § 55

* Consider a multithreaded server with a thread pool of workers

e Master thread places new clients/requests in shared queue \(QA{JZ
* Worker threads in thread pool retrieve requests one by one and process /_\7 .0/
* Worker thread can block multiple times to service one client @Qm)é 3/
* Too low number of worker threads cannot efficiently use CPU cores
 Min no. of threads in thread pool to fully utilize a single CPU core? Fse0) WK

e Suppose each worker thread performs 0.01 seconds of computation on CPU to
process client request (service demand) and 1 second waiting for 1/0 before running

on CPU again (turnaround time) 1 _ o N
¢ Optimum number of threads = turnaround time / service demand = 100 ¢ ol (¥/

* Thread pool of worker threads is essentially a closed loop system! TP
* Thread uses bottleneck (CPU), waits for some time (I/0) and comes back to CPU

—
_./
)

160 200 o pak [
Optimum size of sliding window
- 7 “ 555 a0

* Stop-and-wait protocols sender sends packet, waits for ACK, sends next packet
 Sliding window protocols: sender sends a window of packets before waiting for ACK

* Bottleneck (slowest) link on network path is better utilized, avoids too much waiting

What is optimum number of packets in a window?
e Too small window size = sender waits for ACKs often, bottleneck link is under-utilized
* Too large window size = unnecessary queueing at bottleneck router, packet drops

Optimum number of packets = bandwidth delay product. Why?
* Bottleneck is transmission on slowest link, queue builds up at outgoing link of bottleneck router

» Suppose bandwidth of bottleneck is B packets per sec, each packet needs 1/B seconds to be
transmitted at bottleneck link (service demand)

* ACK received after RTT, so packets in a window “come back again” after RTT (turnaround time)
* Min number of packets to fully utiliz =RTT *B

Estimating queue sizes: Little’s law

—)

IOO —:5> ") ¢

How to estimate size of queues between various components/threads/processes?
* Trivial in closed loop system (max concurrent users = max queue size is kn
estimate for open loop systems 2 >,
Little’s law for open loop systems: N =R * W, where
N = expected number of requests being served in the system ﬁj e %@
* R =rate of arrival of requests
* W = average time spent by a request in the system (time to process request + time spent waiting
in various queues)
Example to illustrate Little’s law
* Requests arrive at 100 req/s, each request takes 2 seconds for waiting+processing in system
* Approx. 200 requests in system at any point of time (being served or waiting)
Applications of Little’s law: configuring queue sizes, sanity check of response times
e Given measured time in system (W), find optimal queue size (N)
e Given queue size (N), estimate how much time requests should spend in system (W)
* Very popular, widely applicable, irrespective of characteristics of system and traffic

Sanity check of load test results

* Perform simple back-of-envelope calculations to ensure that the results of
your performance measurement are reasonable

* We expect the following based on basic queueing theory

T[Lrgyghguﬂncreases linearly with incoming load until capacity, flattens afterwardsNK

Utilization of some hardware resource at bottleneck component increases with
increasing load, reaches 100% at saturation capacity

Response time is low when incoming load is below capacity, increases afterwards | -~
(exponentially for open loop, linearly for closed loop)

Queue buildup at various components can be justified using Little’s law ERVIARIID
Response time is roughly equal to processing times at all components + queueing delays
We do not expect any failures/errors/crashes when system is under capacity

Errors occurring during overload are explainable due to excessive queueing / load
exceeding capacity aw

/

Tuning system configurations

* |deally, at saturation, some hardware resource at bottleneck component is fully
utilized, explaining why the throughput cannot increase any further
* If processing a request takes 10 millisec at database, capacity of 100 req/s is justified

* Reasons why throughput flattens even though bottleneck is not saturated

* Not enough threads in thread pool to utilize hardware resources K

* Not enough buffer size (BDP) at various network queues or socket buffers
* Some software resource (e.g., max file descriptors allowed per process) is exhausted

e Threads waiting unnecessarily for locks (many such reasons)

e Use insights from queueing theory to tune various system parameters
* Queue size, number of processes/threads, number of file descriptors, ...

e Hardware resources not being fully used = do something to use them better

Summary

* In this lecture:
* Back-of-the-envelope calculations to understand performance measurements
* How to tune system parameters for optimum performance

* Run a simple load test using Apache web server and JMeter. Analyze
the performance results using the techniques studied in this lecture.

