Design and Engineering of Computer Systems

Lecture 33:
Performance profiling and optimization

Mythili Vutukuru
IIT Bombay

Performance engineering

 Story so far this week:
* Understanding performance: parameters, metrics
e How to run a load test, types of load tests
. Back—of—the—envelga_e;cwifor sanity checking results
* Tune system parameters to optimize hardware resource usage

* What after load testing and performance measurement?
* If system performance can handle expected incoming load, do nothing, else optimize
* Monitor utilization of hardware resources to identify bottleneck resource
. PM help to identify root cause of high resource utilization
e Apply various techniques to fix root cause and optimize performance

* Note that improving performance of one component may shift bottleneck elsewhere;
cannot fully eliminate all performance bottlenecks

* Performance engineering is iterative process until performance matches expected
incoming load to a system

Monitoring usage of hardware resources

* At saturation, performance of bottleneck component cannot increase
further because some hardware resource is fully utilized

* Monitor usage of all hardware resources using various tools:

* Tools to monitor CPU utilization, what fraction of CPU cycles in each CPU core are
fully utilized and by which processes, e.g., “top” in Linux. - =

* Tools to monitor memory usage, what fraction of main memory is free and what —
fraction is used by user/kernel, e.g., “free” in Linux E—

* Tools to monitor memory bandwidth usage, how much of the memory bus =
bandwidth is utilized by ongoing memory accesses, for local and NUMA memory

e Tools to monitor utilization of various I/O devices like disk and network card, and rate
of data transfer to/from device, e.g., “iostat” in Linux /CW 7
* Once we identify which hardware resource is saturated, identify why the ﬂj/
hardware resource is being used so heavily: profiling tools

Ha

Performance profiling

Performance profiling software (e.g., perf, oprofile, PCM tools) help us
identify the root cause of performance issues

Profilers monitor the execution of a program and help to:

e Count various hardware events (e.g., cache misses) and software events (e.g., page
faults) occurring in the system

* Attribute events to parts of program code responsible for events
e Understand how CPU time is spent in executing various user/system functions
* Understand how various hardware resources are utilized

By analyzing profiler output, we can identify
* Parts of code that are performing inefficiently
* Hardware or software events that contribute to poor performance

Profiling is a starting point for performance optimization

Profiling: Statistics of events

* Profiling software collects statistics of various hardware and software
events in the system when an application is executing

 Counts per-thread, per-process, per-CPU, or system-wide

* Hardware events (typically exposed via special CPU registers)
 Number of CPU cycles (default event)
* Instructions executed per CPU cycle (indicates CPU efficiency)
* Cache misses for various levels of CPU caches
* TLB misses, other events like cache pre-fetch misses, ...

* Software events (typically maintained by OS)
* Page faults, context switches, ...

Profiling: Attributing events to specific code

 In addition to counting events, profilers can also attribute event to specific
portions of the code, by inspecting PC when event occurred
* Not possible to do this every time event occurs, too much overhead
e Such information can only be exposed on some subset of events

* Sampling: for some subset of events, information about the code D
responsible for causing the event is stored

e By sampling PC value periodically, we can find out which parts of code is consuming
what fraction of CPU cycles

e By sampling PC value during cache misses, we can know which parts of code are
responsible for poor cache performance

* Profilers translate from PC to function name for easy readability
* End result of profiling: identify which parts of application code to optimize

Performance optimization techniques (1)

* |f all CPU cores are saturated by application, identify which parts of the
code are leading to high CPU usage via profiling, and then optimize

* If user functions/libraries using more CPU than required, optimize/rewrite the code
to be more efficient, or use high-performance libraries 0

* |f excessive CPU usage by kernel code, optimize where possible, e.g.,

* High CPU usage due to frequent interrupt handling with high speed network card =
move to a more optimized device driver which generates fewer interrupts (e.g., NAPI
drivers), or split interrupt processing to multiple CPU cores (e.g., using RSS)

* Upgrade to better file systems to reduce file I/O overhead
 Tune CPU scheduler parameters to minimize context switching overhead
e Better memory allocators to avoid dynamic memory allocation overhead

Performance optimization techniques (2)

* If memory usage too high, system performance may be sub-optimal
due to thrashing (too many page faults, excessive swapping to disk)
* Reduce size of in-memory data structures in application

* Improve locality of reference within program, so that working set size
(amount of memory being actively used) is low > Q

* If poor cache hit rates and high memory bandwidth utilization, CPU (/)
cycles wasted in waiting for memory access
* Design frequently used data structures to fit within CPU caches

* Write application code in a way that maximizes locality of reference (spatial, o dra
temporal) and improves cache hit rates, TLB hit rates

* Sequential access of memory and compiler hints to improve performance of \HVL
hardware pre-fetchers
D1 AN

 PU

Performance optimization techniques (3)

 Compiler optimization turned on, to enable generation of optimized binary
application code

* Advanced techniques used to generate efficient machine code in compilers
* Some parts of application code can be offloaded to hardware accelerators j@p

to run quicker

* Graphics Processing Units (GPUs) are used to run video processing and rendering 0<
algorithms efficiently

 When I/0 is bottleneck, consider caching result of I/O in storage that can @ CPU
be accessed faster, for future use—

* |f nothing else works, add more hardware resources to increase
performance and handle i incoming load

* Vertical scaling: add more hardware resources to the bottleneck machine
« Horizontal scalir Horizontal scaling: add additional machines to handle extra 96
2 O
O L ()0

Summary

* In this lecture
* How to use profilers to understand performance bottlenecks
» Techniques to optimize performance

* Programming exercise: install a profiler (e.g., perf). Use it to profile a
simple program you have written which has a lot of CPU computation.
Study the profiler’s output to see if you can identify the bottleneck.

