Design and Engineering of Computer Systems

Lecture 34.
Caching

Mythili Vutukuru
IIT Bombay

Caching in computer systems
@/4;- W

e Caching: when data has been fetched from a “far away” location,
keep a copy in a “near by” location, in case it is needed again in future

* Cache has limited capacity and cannot store all the original data

* Why caching? If fetching from “far away” component is the
performance bottleneck, caching will improve capacity

* Examples of caching in computer systems seen so far C P
e CPU caches keep a copy of data fetched from main memory (DRAM) in SRA
(more expensive but faster access time than DRAM) Cache
» Disk buffer cache keeps a copy of recently accessed disk blocks in memory
e TLB caches recently accessed virtual-to-physical address translations (/
 More examples of caching in this lecture »mv Mern 2 DR A

J Y ?géAo&LQ

L% ?T

HT1 D

~>

HTTP caching cliord irrp 0p— Seaven

YO K-
 HTTP cache: received HTTP responses are cached, so that future HTTP
requests for same URL can be satisfied without fetching over network

* Shared HTTP caches: proxy HTTP server close to the client, intercepts HTTP reques
checks if response is locally cached, returns if cache hit, fetch from server if miss

* Private HTTP caches within user browsers also
* Cannot cache encrypted HTTPS content, only plain HTTP

 What if server changes web page? How will cache know?

» Server indicates how long the response can be cached (or even say that it should never
be cached) in HTTP response headers (e.g., cache-control header, max-age header)

* Conditional HTTP GET: cached content has expired, user has requested same
URL, cache performs conditional fetch (fetch only if needed)

* Cache sends HTTP GET to server, indicating last modified time of its cached copy

» Server indicates whether previous content is still valid or sends updated response ; Lont

. v
DNS caching) e v
e T
* DNS: resolves domain namesptel.ac.in) to server IP address
 DNS records stored at authoritative name servers hierarchically et

* DNS resolvers contact name servers recursively to resolve a name

. DNmapping domain names (of final host as well as
intermediate authoritative name servers) to IP addresses are cached

* Locally within machine, or shared across clients at DNS resolver

* DNS resolution involves multiple network communications and can take
up to few tens of milliseconds

* Caching of popular DNS records is critical for good performance

* Time to live (TTL) in DNS response indicates how long it can be cached
e Allows server to update IP address and change DNS records after some time

%%/7%)7)@

—opp o DIS

* Application-level data objects, database queries, and many other app-level
information can also be cached
* Front-end caches responses from app servers
* App server caches responses from database
* Reduce communication between app components, improve performance

* App-layer caches are separate software components that sit between
various other components, e.g., between app server and database

* In-memory key-value stores (e.g.

layer caches ,
* Example: key = database query, value = result of query (app database queries)
* Example: key = image name, value = image (popular images in social network) S

* CDNs also cache some app-layer objects and web pages across Internet

CD(\\
d/\g_//\)(///7 i P

Application-layer caching

e emcached) often used as app-

When to cache?

Workloads which lead to high cache hit rates e Pno

e Skewed distribution, some items are very popular and accessed very often @Mrs) C@@h

Cache has to be faster access technology and/or closer ge
original copy of data
* In-memory caches of database queries vs original database on disk
* SRAM (CPU caches) is faster access than DRAM (main memory)

e Caches cannot accommodate all the original data, so need a good%u(ogligl
LRU

to decide which data is cleared when cache is full, e.g., least recently use)
 Eviction policy must ensure less probability of evicting a useful item needed in future >/ -
e Eviction policy should be implementable easily with low overhead / — N

Cache has to be large enough size to accommodate the working set size, i.e.,
most frequently used data in a given interval of time

* Otherwise, very poor hit rates, no benefit of using cache

QKAW cathe 258

Position of cache P
| \ = Soamon”
» Suppose client accesses data from server (which has original copy), keeps a
copy in cache. Where is cache located relative to client and server?

* Inline cache: cache is on communication path between client and server
Inline cache:

* Client checks cache. If cache miss, cache fetches data and gives it to client, stores copy
* Client writes in cache first, cache updates original copy of data immediately (write
through) or later on (write back) - UernX OW
 Example: CPU caches, disk buffer cache \
pie- & S CaChe

* Write-aside/look-aside cache: cache not on direct path, checked on the side
» Client checks cache. If cache miss, client fetches data from server directly, updates the
cache afterwards) U
* When client or server update data, cached copy is invalidated or updated separately / \\/
* Example: MMU uses TLB (Translation Lookaside Buffer) to cache address mappings (£ D T

LB

/—_‘>
: ek —_—— C%W Comni_
Populating cache contents P

* With caching, one piece of data may have multiple copies: one “master”
copy and multiple cached copies
e Contents of memory at some address is stored in main memory itself (master copy)
and in one or more CPU caches (private to cores, shared across cores)

* Demand filled cache: content populated in cache only when needed, when
requested by clients

 Example: CPU caches, HTTP caches, DNS caches
» Different cached copies may diverge from master copy based on access pattern

* Proactive cache: server proactively updates all cached copies whenever it
knows content has changed

e Example: In some CDNs, server pushes updated content to CDN replicas
* Easier to maintain consistency of cached content across replicas

@uw /
Cache consistency: tracking rephc //

 How do we keep track of multiple copies of data to keep in sync?
* In CPU caches, information about which cache has which memor

locations is known across all CPU cores. How? L'L
* Snooping: when one CPU core accesses memory location and fetches into prlva e
cache, all other cores snoop on the access and remember it D2AN

* Directory: all cores update information about their cached memory locations in a
directory that is accessible to all CPU cores

* In some systems, e.g., CDNs, server has master copy of content and
maintains information on WhICh all CDN replicas it has pushed content to

* In some systems, e.g., HTTP nes within browsers, it is not possible to
keep track of all copies of data across all caches of users

Cache consistency: updating replicas }Q_,,i@

—— °

 How to ensure all replicas of cached data are kept in sync?

e Cache coherence protocols: when one CPU core updates the value in its private
cache, all copies of the item in other caches are synchronized using cache
coherence mechanisms

e Other CPU cores which have older value in private cache update their value
* Or, other CPU cores with older value mark their copy as invalid, fetch again in future

 What if server changes value and doesn’t keep track of who all have cached it,
e.g., HTTP caches? F

* Use some way to identify what is latest copy of data: sequence number, version number,

last modified time, ...
* Whenever data is modified in one of the caches or master copy, version numM& fimve

timestamp is updated c@u,u S o ensun
* When accessing cached copy, check that version number / tlmestamp is latest (update to
latest copy or invalidate if value is stale) ©

@ @

Summary

* In this lecture:
* Examples of caching in computer systems
* Principles of designing caches in computer systems

* Using Wireshark, examine the various HTTP headers that are
responsible for controlling cache behavior. Check what all web pages
are cached in your browser’s cache.

