Design and Engineering of Computer Systems

_ecture 35:
Performance Scalability

Mythili Vutukuru
IIT Bombay

Performance scalability

* Performance measurement and analysis so far: how a system performs
with a given configuration (CPU cores, memory, ...) (@ oo veqfs

* Performance scalability: how performance improves if we give more |
resources to the system A qu

* A system with good performance scalability will improve its performance in
proportion to the increase in resources

» After we have optimized performance of a system to the best possible
extent, only way to improve performance further is by scaling: (@ @
]

 Vertical scaling / scale-up: add more hardware resources (e.g., CPU cores / memory /
whichever resource is bottleneck) to existing machine

* Horizontal scaling / scale-out: add more replicas of bottleneck component and >
distribute load between replicas l:]

* Cloud management systems provide auto-scallnF: automatically |dent|fy\
e

when incoming load is beyond capacity, and scale bottleneck components |

Multicore scalability

* One way to do vertical scaling for systems where CPU is performance
bottleneck is to add more CPU cores to system pert
* Cloud orchestration systems monitor CPU usage of components and dynamically
assign more/less CPU cores based on utilization

I f e
. icore scalability: application performance increases in proportion to M‘%)M
CPU cores assighed to application

* Applications that can be parallelized easily have good multicore scalabllltyD D

« Common reasons for poor multicore scalability PN

* Cache coherence overheads due to accessing shared memory via multiple CPU cores
with private caches

* Locking at application and OS serializes access to critical sections, reduces parallelism
in application Lo co o
BD

)
D

bool isLocked = false
void acquire_lock() {

while(test-and-set(isLocked, true) == true);

Cache coherence overhead §

* When same memory location / variable is accessed from multiple CPU cores,
multiple copies of cached data need to be kept in sync

* Snooping or directory to keep track of which CPU core has cached which
addresses

* When one CPU core updates its private cache, other cores must update or invalidate
their cached copy

* Not just with true sharing, but also due to false sharing (CPU cores access different

memory addresses located on same 64 byte cache line) [—@ézﬁ%j 64 byl

 Why do CPU cores access same memory location?
* Multiple threads of process access same parts of memory image from different cores
* Multiple processes in kernel mode can access same OS code/data from different cores

» Variables like locks are accessed from multiple cores, resulting in cache line with lock
variable bouncing across CPU cores during lock acquisition

_—

Multicore speedup 5@ § § §
O O O QO

 Perfect multicore scalability possible only if all threads/processes can execute
independently in parallel on multiple CPU cores

* Sometimes, threads cannot execute in parallel, and must execute serially for
some time, leading to poor multicore scalability

* Example: only one thread at a time can execute critical section
* Example: one thread in pipeline waits for previous thread to finish L !D

* Amdahl’s law: estimate performance gains due to parallelism —

I
* Let T1 =time required to perform a task on one CPU core P
Let Tp = time required to perform task when running in parallel on “p” cores
Let a = fraction of task that can be parallelized - — _ d Tl 4 Q,J)TJ

We[_FEveTp=(a*T1/p)+(1-a)*T1 - !P'
Speedup due to using multiple cores = T1/Tp (ideally p if a=1)
For large values of p, speedup approx. 1/(1- a) ~
If a is small, speedup is small, poor multicore scalability /,? _Q(,/ +(' ”°4>

Technigues to improve multicore scalability

* Avoid sharing data across cores as far as possible: split applicati
per-core / per-thread slices where possible

» Split across cores at granularity of cache lines to avoid false sharing

* Use locks only when required, as locks cause cache coherence traffic an
also serialize code execution

* Modern lock implementations avoid excess cache coherence overheads when
multiple threads on different cores contending for lock

* Lock-free application design, lock-free data structures @ O @

* OS designs evolving to scale well with multiple CPU cores, by splitting OS
data structures into per-core slices where possible

* Modern OS have NUMA awareness: in NUMA systems (some CPU cores
closer to some main memory), run process on CPU cores close to memory

Image / 77/73
DD

W\

70 15 7/ O
/ N >)L >)

Horizontal scalin N, =
& o - >0

o
. - . .)
» Suppose bottleneck componentin a sm&nnot handle all incoming IoaA,j
no matter how many optimizations are performed. What next?

* Horizontal scaling: instantiate multiple replicas of bottleneck component,
distribute incoming load amongst replicas

* Automatically done by cloud orchestration systems

* How do other components / clients contact multiple replicas?

e Other components are told of multiple replicas explicitly (e.g., HTTP clients learn of
multiple server replica IP addresses via DNS)

* Or, all incoming traffic comes to a load balancer, which redirects traffic to replicas
* Load balancer based design more popular as scaling is transparent to others

* Load balancers are special software/hardware components which redirect
traffic to replicas as per some policy

* Need to perform well to handle all incoming load without becoming bottleneck
* Must adapt dynamically to changing load and changing number of replicas

Load balancer design 7|

5
- 7

p

* Load balancer can operate at many layers of network stack

* Network layer load balancer: only changes dst IP/port to redirect packets
 All packets arrive to one (virtual) IP address/port number of server

* Load balancer rewrites destination IP address/port number to redirect traffic to different
server replicas

* Does not perform any transport/application layer processing CUU
icati S : rproyl”
* Application layer load balancer: acts as application endpoint S
e Clients and other components connect to load balancer and not server replicas®
* Load balancer receives app requests (e.g., HTTP requests), makes a request again to
server replica, fetches response, and sends it back to clients
* Application layer HTTP load balancers also serve other HTTP functions
 Directly serve static content without contacting server replicas
e Caching of responses from replicas, SSL termination, ...
* Called reverse proxy servers (to differentiate from proxy servers at client side)

)

o~

Load balancer policies

 How does load balancer distribute traffic to different replicas?
* Note that traffic of one TCP/UDP connection should always go to same replica

Round robin: assign connections to replicas in round robin manner

* If first packet of a connection, pick one of the servers in round robin manner, store mapping
from connection identifier (src/dst IP/port) to assigned server in a table

* If packet of ongoing connection, redirect packet to previously assigned server

* Hashing: use hash of connection identifier to pick one of the server replicas

* E.g., hash(src port, dst port, src IP, dst IP) modulo N, where N is number of servers

* Problem: mappings of existing connections change when N changes, handle such changes
carefully to not disrupt ongoing connections

» Other policies possible, e.g., pick least loaded server for a new connection

* What if requests of one user, coming on different connections, sent to different
replicas? How is user state maintained correctly across replicas?

/
— ()

%>

User stickiness in load balancing —— @ ">

—

* Some applications want to ensure “stickiness” of users or “sessions”

 When user is purchasing product from e-commerce site, transaction happens over multiple
TCP connections, which can go to different replicas

* We would like all TCP connections of a user in one “session” to go to same replica

* Why stickiness? All data related to user’s session (e.g., shopping cart) is available
in the same replica, instead of fetching from remote database frequently

* Otherwise, every replica has to store/fetch session state in remote database often

* First connection of a session assigned to any replica using existing policy, e.g.,
round robin. Mapping from session to server stored. All subsequent connections

of session assigned to same replica 2
* How is a user session identified? User source IP address, or HTTP cookies (special W
data in HTTP requests to identify users), —— P

: L i +Cool
* With user stickiness, user data can be stored locally within components for faster
access, need not store/fetch data in remote database servers for every request

fogut) —7 P ——— pp

Managing application state across replicas

* Application components store user state, e.g., current contents of user’s shopping cart.
How to manage such state across multiple server replicas?

e Stateless design: front end and app servers store no state, all state is stored/retrieved
from backend databases for each request. Backend common to all replicas

* High overhead due to remote access needed for every request
» Easy to add server replicas and scale system horizontally; simple load balancer design
 User level stickiness not needed, any replica can handle any user session

-
.
* Shared nothing stateful design: each server replica locally stores a slice of applica@n/ B

state for some users/sessions. User state is partitioned across replicas ,, —— D;

* Load balancer should ensure user level stickiness, redirect user traffic to replicas that have staté”,@’f

: : : S Tl =
* Fully replicated stateful design: all server replicas locally store application state of all "'~
users/sessions x D:

* Load balancer need not ensure user stickiness; any connection can be assigned to any server
* Higher overhead than shared nothing design; servers must communicate with each other to keep

II'copies of i -
all copies of user state consistent L > D oM Stale |
T (ol shake

—5

Summary

* In this lecture:
e Performance vs. scalability
 Vertical scaling and multicore scalability
* Horizontal scaling and load balancing

* Measure performance of any simple application/web server with
increasing CPU cores. See if you get multicore scalability.

