Design and Engineering of Computer Systems

Lecture 37/:
Replication and Consistency

Mythili Vutukuru
IIT Bombay

wg%%gﬂw Stocte
(D) —> O
O —>)

* One way to build fault tolerant systems: replicated state machines
e Requests from clients (inputs) are processed by all replicas

* All replicas start with same state, handle same input, so will stay in the same
state always (assuming deterministic processing)

e Used to build active-active replicated systems
* Used to build reliable distributed data stores for active-passive systems

Replication and Consistency

* Challenge in building replicated state machines: consistency)
 What if a replica was down and didn’t receive some input? - OX
* What if a replica received some inputs in a jumbled order?)

 How to ensure all replicas are always consistent, i.e., in the same state?
 This lecture: mechanisms for replication that guarantee consistency

Consistency models

* Many definitions / models of consistency, some strong and some weak

* Atomic consistency is example of strong consistency model RS 0\\0[’0‘ e
* All inputs / operations (e.g., add/delete/view items in shopping cart) executed atall

replicas in exactly the same order Y. Vien o)

* If an operation Y (e.g., view shopping cart) starts after operation X (e.g., add item to cart)
finishes according to some global clock, then Y should always see the result of X
* Eventual consistency is example of a weak consistency model
WeaK (

* If an operation Y (e.g., view shopping cart) starts after operation X (e.g., add item to cart)
finishes, then Y should see the result of operation X eventually

e Spectrum of consistency models from strong to weak

» Example: causal consistency model says that same order of operations/inputs maintained
only between operations that impact each other (e.g., operations on same shopping cart)

and not across all operations

@O

* Requires the use of consensus protocols: messages exchanged amo @Ilcas

to let them agree on certain decisions

How to achieve strong consistency

* Raft: popular, widely used consensus protocol that lets multiple replicas agree
on an consistent ordered log of entries

* Example: replicas of shopping cart servers agree on a log containing various operations
(add/delete/view cart) to be performed on shopping carts

e Building a replicated state machine with Raft

* All replicas run Raft, agree on a consistent replicated log containing the same operations
in the same order at all replicas

e After an operation replicated in log using Raft, all replicas execute the operation, stay
consistent with each other

* Other consensus protocols can be used to build replicated state machines,
e.g., Paxos lets all replicas reach agreement on a single value in each round

//\7()@%
. {
Strong consistency: Raft (1) O

()

e Basic idea of Raft: replicas exchange messages to maintain a
consistent replicated log (same entry at same index in every log) /

* Replicas elect one leader, rest are followers

* Leader receives inputs from clients, propagates to all replicas in the form of

log entries D

Once leader has replicated entry at majority of nodes, entry considered
committed, applied to state machine, confirmation returned to client

What if majority of replicas cannot be contacted? No response to client
Example of a quorum protocol: contact a quorum before returning response
* Raft instance with 2f+1 riglécas can tolerate up to f failures

e Leader failure: followers detect via heartbeats, elect new leader, start new
term (old leader can come back up and join as follower later)

S

. VA,
Strong consistency: Raft (2) @\\
VﬂGQ‘b@w;o

» Replica failures can cause logs to div o v
* Some follower may have briefly crashed and missed a few; og entries. .
* Old leader of previous term can have some extra uncommitted entries that it did not -
manage to replicate before it crashed S
* How does leader reconcile such logs?

* When leader propagates entry k, it also mentions its entry “k-1”". Follower updates
entry “k” only if its entry “k-1” matches with that of leader

* If a follower’s previous entry does not match, leader will rollback to the point where
logs match and help follower catch up with all previous committed entries

* Leader tries to sync all follower’s logs to its own log
O- Leader’s log is the authoritative source, so it is crucial to elect good leader

]

* All replicas vote for node with most up to date log (with all committed entries)
* Leader elected successfully only if it gets majority of votes (f+1 out of 2f+1)

* Any two majorities always intersect, so at least one node with up-to-date log of
@ + previous t\e’"rjm“vﬁﬂ“be available to be elected as leader in next term

Weak consistency: Dynamo (1)

e Raft and other strong consistency protocols: if majority cannot be contacted, no
response returned to client, system is unavailable sometimes

 What if we want high availability? What if we return a response back even if client g
request is not replicated at a majority of nodes? /D
) 26

* One client request (add item to cart) replicated only at a minority of nodes (due to failures
* Another request (view cart) executed at another minority of nodes

 Itis possible to have two minority sets with no intersection, so viewing cart may not reflect latest
item added to cart

* Inconsistent values can be returned by the system, but service always available

* Some systems accept weak consistency in return for high availability, e.g., Dynamo
NoSQL key-value store (Amazon) has high availability, only eventual consistency

e S orum protocol, response returned to client even if replication not successful at all
desired replicas due to replica failures

» Systems eventually tries to catch up the missing replicas, but no guarantees on timelines

Weak consistency: Dynamo (2)

e Systems with weak consistency can have conflicting values of A
application state C D

» Shopping cart of user has items A, B

e User adds item C, replicated only at a minority of nodes (due to failures)

e User adds itemj, replicated at a different minority of nodes ("
 When user views cart, can get back “A, B, C” or “A, B, D” or both

* Note that this can never happen with Raft: at least one node will have seen
both updates, as any two majorities will intersect

* Application can decide how to handle inconsistent values

* Merge shopping carts to have superset of all items/ZA/,/B,,C_LQ”d

* Trickier to merge two different versions of bank accounts

Which replication / consistency model to use?

* How to replicate, how much consistency depends on application needs
e Online banking server may prefer a strong consistency model
e Shopping cart server may be okay with a weaker consistency model

* |[n general, providing stronger consistency models requires more work in th
application, and higher performance overheads e\
* Tradeoff between consistency and availabilit
* Providing strong consistency requires contacting majority of replicas
* What if some replicas cannot be reached, say due to network partition/failure?

e Systems providing strong consistency will become unavailable at such times
e Systems with weak consistency will be available but may return inconsistent results

* CAP theorem: you can get only two but not all out of (strong) Consistency,
(high) Availability, (network)ﬁrtition tolerance

Summary

* In this lecture:
e Strong and weak consistency models
 Different ways of replication to achieve strong/weak consistency
* Tradeoff between consistency and availability, CAP theorem

* Refer to the original papers on Raft and Dynamo:

* "In Search of an Understandable Consensus Algorithm", Ongaro and
Ousterhout.

e "Dynamo: Amazon's Highly Available Key-value Store", DeCandia et al.

