Design and Engineering of Computer Systems

Lecture 38:
Atomicity

Mythili Vutukuru
IIT Bombay



Atomicity: all-or-nothing

* Atomicity: in computer systems, some sequence of operations must appear{i :’,]f
like one atomic unit, for functional correctness. —

e Either all the operations complete, or none is executed, but no partial execution

* Transaction: set of operations that must execute with all-or-nothing atomicity -

e E.g., when appending to a file, several disk changes must happen together: block with ;
new data is written, inode stores pointer to new block, free bitmap marks block as usedmd&

e E.g., checkout from e-commerce website, billing and shipping must happen atomically

* E.g., when transferring money from one bank account to another, debit and credit
operations must happen atomically A > >

 Failures violate atomicity: some operations in a transaction may complete,
others may be left incomplete due to a component failure |

* This lecture: how to ensure atomicity of transactions in spite of failures




Atomicity and modularit - _
S~ -
e Atomicity is important when building modular applications

* Example: module A sends request to module B to perform some operation,
e.g., front end sends request to shopping cart server to add item to a cart

* |f processing the request needs multiple operations at B, they should all be
performed atomically. Why?

 |deally, if B completes all operations, B returns successful response to A. If request
execution fails at B, no operation executed, error returned, A retries entire request

* If B performs only some operations and not others, what response will it return?
How should A retry? Makes design messy

* Design guideline: module’s APl should expose fine-grained services which
can be executed / implemented atomically



Another definition of atomicity: before-or-after
i —

* Before-or-after atomicity: all operations in a transaction appear like | Z
one atomic unit and execute either fully before or fully after other
events/transactions D Dok

* Example where before-or-after atomicity is required: two threads (@
updating shared counter (counter++) sk
* Load counter into register, increment register, store from register to memory
e Overlapping execution leads to incorrect result, race condition

* One way to achieve before-or-after atomicity: locking to serialize
execution order, naturally prevents overlap of transactions

e Care to be taken to avoid deadlocks with multiple locks




All-or-nothing atomicity: write-ahead logging

* Write-ahead logging: common technique to achieve all-or-nothing atomicity
of transactions in spite of failures, using log on persistent storage
* Phases in write-ahead logging

* Begin transaction: assign unique transaction ID, start logging —
* Pre-commit phase: record all operations to be performed as part of transaction% —

Original copy of data is untouched Comnu
\) * Commit point: commit entry written to log in one atomic operation
* Post-commit phase: install transaction, replay operations in log on original data ,
* End transaction: clean up state, clear log entry _

 How to recover from failures?
* Failure before commit point: no changes made to original data, abort transaction

* Failure after commit point: recover from log by replaying log entries, all operations in
transaction are completed using log




Undo logging vs. redo logging

* Technique described so far: w, roll forward recovery —

e Original untouched before commit. Transaction installed only after commit point.
Log used to redo changes in case of failure

Aot
* Alternate way to do write-ahead logging is w Qﬂﬂ (5@/] L

Covn

* Pre-commit phase: log old value of data in log, directly edit original data
e Commit point: write commit entry to log
* Post commit phase: do nothing, clean up log entry

 How to recover from failures? (rollback recover

e If failure before commit point, undo changes using old values in log, abort
* If failure after commit point, do nothing, transaction complete

* Undoing operations may be difficult in some cases
e Both techniques can be used depending on application




Example: crash-consistent file system

* File systems use write-ahead logging for crash consistency
* File-related system calls update multiple disk blocks D
» All changes must happen atomically, else inconsistent file system data

* Logging for crash consistency

* Pre-commit phase: make changes to shadow copies of disk blocks, write
changed blocks to log on disk, original blocks untouched

e Commit point: commit entry in log
e Post-commit phase: install transaction, make changes to original disk blocks

* Failure before commit: system call fails, no changes made to disk
* Failure after commit: system call replayed from log and completed




clienk ﬁm&w/“7 S
Example: checkout server (1) - e
* Consider purchase management / checkout server in e-commerce website

 Client / frontend makes request to checkout an order via checkout server API

* Server handles request, charges payment from user by contacting banking server,
initiates shipping of order after payment completes, sends confirmation to user

* How to checkout atomically? oo~ | — \

* Pre-commit: create order, assign unique ID, log all order details O

. Cﬂnbm/it/@igt: order details successfully stored in replicated/persistent storage. Order
can be confirmed to user at this point

e Post-commit: proceed to perform operations in the order (billing, shipping)

* How to recover from failures?

* |If server fails before commit point, order not recorded in system, user will not get
confirmation, user will retry later with a new order

* If server fails after commit point, new server replica (or old server after restart) will
resume execution of operations and complete checkout, user won’t notice failure




Example: checkout server (2) \gw S
Cm\//? ‘W

* Consider following scenario Shippeny

» Server recorded order details (commit point), starts executing order, crashes during/after billing
completes but before shipping is initiated

* New server (or restarted old server) resumes order execution, replays billing operation again at
banking server, charges user twice!
* Why this complication?
* Some operations are naturallyai_ggn"n_gotﬁl and can be executed multiple times, e.g., replacing old
disk block with new modified disk block, updating user credit card info with new details
* Some operations should be performed exactly once, e.g., charging user’s credit card

 |f APl is not naturally idempotent, module implementation must try to ensure X
idempotent semantics. How to make payment at banking server idempotent? —~> w
* Banking server maintains a database of transaction IDs that have been billed recently j
 If billing request completed but requested again, bank returns confirmation without charging twice

* |[dempotent APls greatly simplify system design, allow other modules to retry/replay
operations while recovering from failures, without violating correctness




Example: checkout server (3) . Sewev

Multi-tier apps: all tiers must ensure idempotent operations in their APIs

Example: client = checkout server - banking server

* Client does checkout, does not get confirmation, retries. If checkout failed previously, checkout
server executes request. If checkout was completed previously but confirmation was lost,
checkout server directly returns confirmation instead of executing order again

* Checkout server performs billing at banking server, crashes in between. New checkout server
retries request. Banking server charges payment only if previous payment did not complete

Design guideline: use a unique identifier to track a request across all modules in the
application, helps to avoid executing same request twice in case processing request
is not idempotent operation )

* Similar to TCP sequence numbers to filter our duplicate packets at receiver v 59 P

Similar ideas used by network libraries, e.g., RPC frameworks, to guarantee exactly
once RPC semantics (execute RPC exactly once even in case of failures)




Summary

* In this lecture:
e Atomicity: all-or-nothing, before-or-after
e All-or-nothing atomicity via write ahead logging
e Atomicity in multi-tier applications, idempotent operations

* Think of real-life situations where atomicity and idempotent
operations occur. What are some of the techniques used in such
scenarios?



