Design and Engineering of Computer Systems

_ecture 39:
Distributed Transactions

Mythili Vutukuru
IIT Bombay



Reliability engineering

 Story so far this week: how to make systems more reliable by masking faults7@ =

before they turn into failures /> O
* Have multiple replicas of app servers and app data, so that one can take over if the <
other fails, app server functions correctly 7 ()

* Within each server, ensure all-or-nothing atomicity of operations in a transaction,
even if execution is interrupted by a fault, using write-ahead logging

* Another reason for multiple replicas: horizontal scaling, where user requests(

and app data partitioned across multiple shards of a server /!
e Each shard may be further replicated for fault tolerance — L%@
* This lecture: how to handle faults in a partitioned system \ Q .
* How to partition data such that partitions stay stable even when servers fail \
* How to guarantee all-or-nothing atomicity across partitions/shards, e.g., when a O

transaction spans multiple shards (distributed transactions)




How to partition application into shards -
2

e K application data |tems/ke¥s (e.g., user shopping carts) and N server o

shards/replicas: how to assign keys to servers? \JD .
* Simple strategies: round robin, least loaded / K@jf% Seanen’ N N D

* Round robin: assign key to servers in round robin manner when key seen first time
* Least loaded: assign key to least loaded server when key seen first time

* Problem: need to maintain lookup table mapping keys to assigned servers, to redirect
future requests from same key to same server, causes high overhead

* Technique to easily derive key-server mappings: hashing

* Map each key to a number using some hash function L7 rad 0 = 2
e Assign key K to server number | M) mod N ] o) 9

* Problem: If N changes due to server failures, mapping of all keys to servers changes



Consistent hashing

2,
* A technique to partition keys (app data) to servers (sha%rds) such that

* No need to remember mappings for every key to assigned server
* Very few mappings c%r{ge if servers go down or come up

* How consistent hashing works

e Server identifiers are hashed to a value in a circular range, say [0, Z-1], i.e., each
server occupies a certain position on a circular ring / number space

* Application data / key is also hashed to same range, and stored at a server
immediately succeeding it in the ring

* No need to remember mapping for each key, only need to remember positions
of server shards on the ring, can compute server storing any key

* |f a server shard fails or joins, only keys at its neighbors change, minimal
disruption to key-server mappings



Horizontal scaling and replication

/] &3
* For fault tolerance/replication, a key can be stored a%ultiple servers

succeeding the key on the ring, not just the first one

* Multiple servers at which a key is stored can run some consensus protocol, e.g., .
Raft, in order to store app data pertaining to a key consistently 7

* Understand the difference between replication and partitioning O

* We partition keys (app data) to servers using consistent hashing for horizoﬁl\o
scaling of performance, each shard/partition stores different sets of keys,
handles different user requests

* We replicate the same key at multiple server replicas for fault tolerance, so that
the application processing can proceed correctly even with failures

* Usually, application servers need to do both partitioning and replication:
partition data into shards, replicate each shard at multiple replicas

* Same server can be part of multiple shards as a primary/backup replica




Distributed transactions

* Atomicity discussion so far: how to achieve all-or-nothing semantics for a set
of operations within a transaction in one server, in spite of failures /7

e E.g., checkout shopping cart (billing + shipping), file system changes

* Sometimes, operations in a transaction need to be performed across —) D |
multiple partitions/shards: distributed transaction —

e E.g., transfer money from one account to another involves two steps to be performed> Q |
atomically: debit from one account, credit to another account

* What if both accounts stored in different shards/partitions? How to ensure transaction
executes atomically across both shards? A — G

* Two phase commit: protocol for all-or-nothing atomicity across multiple
nodes in a distributed transaction processing

e Coordinates amongst multiple nodes to ensure that all nodes commit or abort the
transaction together




- A B

. i NO
Two phase commit: overview . -
P At Wﬂﬁ
C ﬂ@ oo 1

* Two phase commit: assume a node C coordinates the transaction
between nodes/servers/shards A and B (can be more than two also)

* Phase 1: C sends prepare messages to A and B. A and B can either reply Yes or
No to agree/disagree to proposed transaction

* Phase 2: If both A and B reply Yes, then C sends a message to A and B asking
them to commit. If any one said No, C sends a message to abort

* Ensures that distributed transaction will commit only if all parties are
willing to commit, else it will abort

* What about failures? What if one of A,B,C fail in between the protocol
and forget what they have said? For example, what if B said Yes in
phase 1, fails, doesn’t commit in phase 2?



r B R
_

Two phase commit: coordinator failure /
NI

* |f coordinator C fails in phase 1 before sending prepare message, A and B
will detect failure, abort transaction D Cepwe

* |f coordinator fails during phase 1 (A does not hear back after its vote) C

* If Avoted no, A can simply ignore transaction since it will abort anyways

* If A voted yes, A can neither commit nor abort, must repeatedly contact C to know
whether to commit or abort

—

05

* If coordinator fails during phase 2 (while sending commit/abort decisionsk

5
* When coordinator resumes, must remember commit/abort decision taken, resume =~
execution and complete conveying decision to all servers @ g

e Coordinator mustﬁgd@mmit/abort decision to persistent storage at start of phase 2———————
* Even if coordinator crashes and resumes, all nodes see same consistent decision

N



3@7"”%
Two phase commit: node failure rtal?

* What happens when one of the nodes/servers/shards fails? trep

* If node fails before voting, or after voting No in phase 1, coordinator aborts C K»{y

transaction anyway, so no harm done Ny

: : : : : , : Com
* If node fails after voting yes in phase 1, must wait for coordinator’s commit/abort ~~——
decision after restart, and commit transaction if required

* To ensure node commits after voting Yes in phase 1, node should log all changes
needed to commit transaction b%lyingﬂes, so that transaction can be
installed correctly if coordinator asks to commit in phase 2 \{e/><

* If coordinator decides to commit transaction, must necessarily contact all nodes in
phase 2 and ensure they receive the commit decision, in spite of failures

* Practical issues with 2 phase commit: nodes/coordinator have to block in
certain cases, have to repeatedly retry to establish communication



Summary

* In this lecture:
* Consistent hashing to partition application data to shards
 Two phase commit for all-or-nothing atomicity in distributed transactions

* Revisit the Dynamo paper to read more about the concept of
consistent hashing

e "Dynamo: Amazon's Highly Available Key-value Store", DeCandia et al.



