Design and Engineering of Computer Systems

Lecture 40:
Case studies of distributed systems
design

Mythili Vutukuru
IIT Bombay

Reliability engineering: Putting it all together

User profile management g User profile data

Product management e Product catalogue

Shopping cart maintenance g Shopping cart info
Order management (purchase, billing, Order database

shipping, cancellations, returns)

~ Front end

»

vwebn servers

Message broker

Recommendation algorithms

- -
* Consider example of e-commerce system design

e Multi-tier architecture of various front-end, application servers, data stores

Fault-tolerant design of application servers

e Application server: system component that handles one type of
requests, maintains one type of app data, exposes APl to others —~/ O
e E.g., shopping cart server or order management server /
* Most servers have multiple replicas/shards for thgL% — D

* Load balancer distributes load to replicas, or other components are tO\Cl\Sf\
multiple replicas and distribute load themselves > O

* How to make any app server reliable and robust to failures?

* Techniques for reliability depend on type of server design

e Stateless server: app server stores all state (e.g., shopping carts of users) in a
remote data store, each server replica is stateless

 Stateful server: app data is stored and maintained within server replica itself

P R e

Stateful server design /

» Load balancer > ; <

—Uuder
* Application server stores data locally on reliable storage SEAESEE

* App data is partitioned into multiple shards/partitions AR OESAE

* Load balancer needs to redirect requests of a user to the server shard that has
the data of the user (W)

» Key-server mappings explicitly stored, or use consistent hashing

* Within each partition, multiple replicas for fault tolerance Q/

* Active-active (replicated state machines) or active-passive (check-pointing)
e Different replication logic based on consistency-availability tradeoff

e Each server replica implements mechanisms for atomicity (e.g., write
ahead logging), for single server or distributed transactions

e Same server replica can be part of multiple shards (need not be disjoint)

Replicas of server

Stateless server design 7 ‘ \

» Load balancer

—
e Application server replicas store no data IocaIIy

* All app data is stored in a remote, reliable data store

* Load balancer can redirect any request of any user to any replica, no
need of user stickiness, simpler load balancing

* Handling every request requires fetching data from data store,
processing request, storing state back in data store (higher overhead)

e Confirmation of request sent only after state has been put in data store

* No special mechanisms needed for reliability at server
e All complexity now in the reliable data storage component

e Hybrid designs between fully stateful and fully stateless are possible

Data store

Distributed data stores

 Distributed data stores for reliable data storage in stateless applications

* Several high-performance data stores used in computer systems

* Key-value stores for unstructured data: Amazon’s Dynamo —
e Semi-structured data (column families exist but no fixed schema): Google’s Bigtable,

Apache Cassandra) 7)

* Structured data: Google’s Spanner supports SQL-like queries ﬂ:@

e Data stores designed for Internet-scale applications, e.g., billions of users7@w)
millions of requests/second, low latency responses O 0
* Flexible data schema, not as structured as traditional RDBMS —))j
Scalable design to handle large traffic, e.g., via partitioning with consistent ha\sh“nckg\> O O

Replication within each partition for fault tolerance, design choices vary between high
availability and strong consistency

Varying amounts of support for distributed transactions
In-memory designs for quick access, disk-based storage for persistence

/Keyl(
@ g0

Distributed data stores: example 4 @ |
e \ © ifjlat‘n:’
* Dynamo is a distributed key-value store P wlr, v) \ ol @ B

* Simple get/put interface, unstructured data _ ek Cl)

 Partitions the keys over the set of nodes usmg consistent hashing
e Every key is stored at N nodes following the key on the circular ring

* Shared-nothing architecture: each replica independently stores state

* Put operation: the key is written to a subset W of the N nodes
* Succeeds even if some subset of nodes are unavailable

* Get operation: the key is read back from some subset R of the N nodes
* Eventual consistency: get may not return latest put
 Multiple values can be returned, application has to reconcile

 Dynamo chooses R,W,N such that R+W > N, so that the latest value can
be returned most of the times, but no guarantee

Data storage in cloud systems

 Large scale computer systems use various types of storage systemsto <
manage large amounts of application data /
* Network attached storage (NAS): reliable file storage appliances —

* Distributed file systems: persistent file storage, implemented not on single T)
machine but across a cluster of file storage servers

 Distributed configuration management: configuration and other important
system information stored in a reliable service accessible to all servers

* Distributed shared memor /rWry: DRAM-like memory from a
cluster accessible over the network

Traditional relational databases, with distributed and scalable designs

Distributed File Systems

* Google File System: distributed file system on commodity hardware
@SC) * Designed to efficiently store a small number of large files (not POSIX API)

Application| | . : .
PP (file name, chunk index)

GFS client |

(chunk handle,
chunk locations)

(chunk handle, byte range)

1]
|
i
’
’
-
P
-

- /foo/bar

File namespace

chunk 2ef0

A

Y

Instructions to chunkserver

Chunkserver state

[}

Y

GFS cluster has one master and multiple chunk servers (Linux machines)
File divided into fixed size chunks, chunks replicated at multiple chunk servers
Chunks stored at chunk servers on local disk, identified by a unique handle

Master stores chunk handle = chunk server mapping

/700 -
ﬁ O
— =)

Legend:

mmm) Data messages \ D

— Control messages

chunk data

GFS chunkserver

GFS chunkserver

Linux file system

Linux file system

ol

glg ...

Summary: Design and Engineering of Computer Systems

Principles of Designing Computer Systems

End-to-end view of Computer Systems Design

.
Application
server
Data

 » o5 | store
Load L PAw)

~ balancer
//—V

Computer Networking Virtualization and
Cloud Computing

Examples from real systems

Operating Systems and Hardware

Performance Engineering Reliability Engineering

