Design and Engineering of Computer Systems

Lecture 5:
Introduction to Operating Systems

Mythili Vutukuru
IIT Bombay



L Sen QDQWW
What is an operating system? NS

* System software, to manage the computer system hardware R /o0
-« Distinct from user software (web browser, web server, gaming engine, ..)

* Special proEram (compiled OS executable) is stored on hard disk, starts
running at boot up

* Once OS starts, it starts other user programs

* Operating system has kernel + system programs
* Kernel = the core part of the operating system

* System programs are useful programs to manage system (e.g., program to list all files
in a directory “Is”)

* Most OS today (e.g., Linux) are monalithic, one big executable of the kernel
* Install kernel modules at run time to add extra functionality (e.g., device drivers)

» Alternate architecture: microkernels, more modular but not popular
* Small core kernel, most functionality as services running on microkernel

() ) seowmces

COYC




Why do we need operating systems?

* Convenience: makes life easy v

* Every user program need not worry about handling hardware on its own

. , .
* Isolation: makes life secure fl. P2 Pr

A
* Multiple programs on a computer system are/ub)rotected from each other

* Better utilization of resources: makes life efficient .~
* Easier to optimize usage of system resources via careful planning

* Operating systems started out as simple libraries for user programs
* Later, support for isolation via CPU privilege levels
 Later, support for multiprogramming




What OS does: process management

* OS runs multiple processes concurrently on underlying CPU

* User programs, system programs, ..
* OS manages life cycle of processes: creation, execution, termination
* OS schedules processes on CPU as per scheduling policies

* OS switches context between processes on the same CPU core

* OS handles interrupts that occur during process execution
* Process execution is paused, CPU switches to OS interrupt handling code

* OS handles program faults that occur during process execution
* Example: segmentation fault




o U code
4 — AP
System calls f,b/gi/ 1

OS2

AW .
* When user program requires a service from OS, it makes a system call

* Example: Process makes system call to read data from hard disk
 Why? User process cannot run privileged instructions that access hardware
* CPU jumps to OS code that implements system call, and returns back to user code

e System calls supported by an OS form the API to user programs

* POSIX API: standard set of system calls defined for portability

* User program written on one POSIX-compliant OS will run without change on
another POSIX-compliant OS

* However, program may have to be recompiled if architectures are different

* Normally, user program does not call system call directly, but uses language
library functions

* Example: printf is a function in the C library, which in turn invokes the system call to

write to screen \NK= > Tt
ST .




User mode and kernel mode gid%

‘R’_k_//

* Modern CPUs operate at multiple privilege levels %ﬂd (0 S)
e User programs run in unprivileged user mode of CPU

* CPU shifts to privileged kernel mode for running OS code during:
* Interrupts: external events
e System calls: user request for OS services

—

* Program faults: errors that need OS attention

* OS code executes in kernel mode, and returns back to user code
* CPU switches back to low privilege level to run user code



RAM

What OS does: memory management Cole
—7

o dato

e OS allocates memory for the memory image of a process [

 Memory allocated in fixed granularity of pages
* Upon process termination, memory is freed up and assigned to other processes

* How do we assigh memory addresses to process code+data?

* How does a compiler know which memory locations will be given to process by 05? ¥ de
. 2 C ey —|Co
* Process code+data are assigned virtual addresses initially —| Aok

 Compiler assigns memory addresses starting from 0 in executable
* Later parts of memory image (stack, heap..) continue at addresses after executable = | StacK

* OS maintains mapping between virtual memory addresses and real = | heap

(physical) addresses in page tabl
* Virtual addresses;rgﬁilg’@d_to physical addresses during execution using page table

* OS ensures efficient usage of memory, by allocating memory on demand ~ w

(

RAM




What OS does: |/O management

* OS has device drivers for all /O devices connected to the system
* Device drivers form a big part of the code of modern OS
* Giving commands to I/O devices, interrupt handling, ...

* File system: OS code that takes care of storing user file data
persistently on the hard disk

* Works with hard disk device driver to store/retrieve blocks from disk

* Network stack: OS manages communication with other machines
over the network Open ruaA AL

D o5

(\/u\) ) Aok @




Booting your system BI0S

* What happens when you boot up a computer system? > L)Omt /Oad@

* Resides in non-volatile memory, sets up all other hardware

 Basic Input Output System (BIOS) starts to run (
N\

* BIOS locates the boot loader in the boot disk (hard disk, USB, ..)
 boot loaader

e Simple program whose job is to locate and load the OS OS
* Boot loader loads OS in memory and sets it up for execution 0 A
* CPU starts executing OS code /// OS5

* OS exposes a terminal / shell / other interfaces to user

* User runs programs, starts processes




Summary

* In this lecture:
* Introduction to operating systems /
* Need for operating systems ./
* Functions of OS: process management, memory management, /O

_

* Next week: process management in operating systems




