Design and Engineering of Computer Systems

ecture 6:
Processes

Mythili Vutukuru
IIT Bombay

Introduction to processes

* Process = running program (code+data)
* Different runs of program will be different processes

* Main job of the OS = run multiple processes concurrently on

underlying hardware noP2 . Pa
. . . e —
 OS virtualizes CPU across multiple processes CPUL

* Key tasks of OS in process management:
* Process lifecycle management: creation, execution, termination of processes
. Scheduling_ggligy; decides which process runs when on CPU
* Context switching: mechanism to switch between processes
* Implementing process-related system call API to user processes
* Handling interrupts and other events

U N

What defines a process? oC Code
dJatv
’\(e% & wa

* Every process has a unique process identifier (PID

* Process occupies some memory in RAM (memory image) 2AMY)
* Code+data from executable
* Stack, heap for runtime memory use, and other components

* The execution context of the process (values of CPU registers)
* PC has address of instruction of process, some registers have process data
* Process context is in CPU registers when process is running on CPU
* Context saved in memory when process is paused, restored when run again

* Ongoing communication with I/O devices

* Information is maintained about files that are open, ongoing network
connections, other active connections to I/O devices

States of a process

* OS manages multiple active processes at the same time. An active process
can be in one of the following situations.

* Running: currently executing on CPU
* CPU registers contain context of process

 Blocked/suspended/sleeping: process cannot run for some time

* Example: process has requested data from disk, command issued, but process
cannot proceed until the data from disk is available

* Ready/runnable: ready to run but waiting for OS scheduler to switch the
process in

* Many processes can be ready but scheduler can only run one on a CPU core

* Context of blocked and ready processes is saved in memory, so that they
can continue to run later on

P

Example: process state transitions X’? V@\W{ﬁ

* Consider a system that has two user processes P1 and P2 |(pcky q(uu\w«?

Initially P1 is running, P2 is ready and awaiting its turn
P1 opens a file and wants to read some bytes from disk via a system call MW

OS handles the system call and gives command to disk, but data is not N/
available immediately

Process P1 is moved to blocked state, OS switches to process P2 N@@Q’d |
Process P2 runs for some time, and then an interrupt occurs from disk)
CPU jumps to OS which handles interrupt, P1 is moved to ready state &\/

OS can continue to run P2 again after interrupt and OS scheduler switches to
ready process P1 later on after some time

Process control block (PCB)

S
* All information about a process is stored in a data structure called the
process control block (PCB)

* Process identifier (PID) . -

* Process state (running, ready, blocked, terminated, ..) .~
* Pointers to other related processes (parent, children)

* Saved CPU context of process when it is not running

* Information related to memory locations of a process

* Information related to ongoing I/O communication

e OS stores PCBs of active processes in a data structure (array, list,..)
* New PCB added when process created, deleted when process is cleaned up

i ——DPl—>72
RERY

Process creation: fork [>
02, .

 How are processes created?
* OS creates the first “init” process in system

* All other processes are created by “forking” from a parent P i?(t 2 = fjr{k()
e f(ret==0
* Parent process calls “fork” system call to create (spawn) =— ESESEIESOIIE

d NeW Process }
* New child process created with new PID elseif(ret>0){
« Memory image of parent is copied into that of child 2l e BEEE
* Parent and child run different copies of same code
* Parent and child resume execution in the code after “fork”
* Child starts executing with a return value of 0 from fork
* Parent resumes executing with a return value of child PID
* After fork, parent and child run independently
* Any changes in parent’s data after fork does not impact child

Exec system call

* [sn’t it impractical to run the same code in all
processes?
* Sometimes parent creates child to do similar work..
* .. but other times, child may want to run different code

Child process uses “exec” system call to get a new
“memory image”

* Allows a process to switch to running different code
Exec system call takes another executable as argument

data, stack, heap, ...

exec fails)

C
RN
Memory image is reinitialized with new executable, new code,

Child process does not return to old parent program (unless

Print statement after exec never prints unless exec fails

int ret = fork();

A if(ret ==0) {

exec(“some_executable”)
print “error: exec failed”

}
e

Ise if(ret > 0) {

‘é print “l am parent”
}

* 1
Exit and wait system calls 7
r

C
 When a process finishes execution, it called exit

system call to terminate
e OS switches the process out and never runs it again int ret = fork()
* Exit is automatically called at end of main if(ret == 0) {
* Process does not disappear, only becomes zombie print “I am child”

* Parent calls “wait” system call to reap (clean up exit()
memory of) a zombie child }

* Wait system call blocks parent until child exits

 After child exit, wait cleans up memory of child and
returns

* Exiting child cannot clean up its memory during
exit system call due to various reasons relating to
how memory is setup

* Memory has to be cleaned by another process only

else if(ret > 0) {
print “l am parent
wait()

}

n”

7k /7 C (
More on zombies fit @\/wfz

S~ (3
* Wait system call “reaps” oni&d*bﬂcm_a_ﬂme/

* Every fork must be followed by call to wait at some point in parent

* What if parent has exited while child is still running?
* Child will continue to run, becomes orphan
* Orphans adopted by init process
* When orphan dies, the zombie is reaped by init

* If parent forks children, but does not bother calling wait for long time,
system memory fills up with zombies

e Common programming error, exhausts system memory

How the shell works

* OS exposes a terminal/shell to run user programs
e Can be created by first “init” process on boot up

 What happens when you type a command in the shell?
* Shell runs command, returns back to command prompt again

* How does the shell work?
e Shell reads input from user
* Shell process forks a child process

* Child process runs exec with “echo” program executable a
argument (most Linux commands are programs written
already for your convenience)

* Child runs “echo” command, calls exit at end of program
* Parent shell calls wait, blocks till child terminates, reaps it
* Once child is done, reads next input command from user

* Think: why doesn’t shell exec command directly?
* Do we want the shell program code to be rewritten fully?

SM //&/zu\g e yexc
.

Secho hello

hello

S

do forever {
input(command)

int ret = fork()

if(ret == 0) {

exec(command)

}

else {
wait()

}

}

> mgw%

PC

OS scheduler

* OS maintains list of all active processes (PCBs) in a data structure
* Processes added during fork, removed after clean up in wait

* OS scheduler is special code in the OS that periodically loops over this list

nd picks processes to run
e outl 0 O

 Basic outline of scheduler code
 When invoked, save context of currently running process in its PCB
* Loop over all ready/runnable processes and identify a process to run next
* Restore context of new process from PCB and get it to run on CPU
* Repeat this process as long as system is running

* Note that restoring context of a process resumes its execution
* PC points to instruction in process code, starts running instruction
* Other registers are filled with values that existed before process was stopped
* Process continues execution without realizing it was paused

Summary

* In this lecture:
* The process abstraction v
e States of a process
* Process Control Block (PCB) v
* Process system calls: fork, exec, exit, wait \/
* How the shell works _~

* You can use commands like “top” and “ps” on a Linux computer to
view all the active processes in your system: how many processes are
running on your computer right now?

* Programming exercise: write simple code using fork, exec, wait
system calls. Can you write a simple shell?

