Design and Engineering of Computer Systems

Lecture &:
Threads

Mythili Vutukuru
IIT Bombay

What are threads? S 5 S gg

* A process may want to run multiple copies of itself
* If one copy blocks due to blocking system call, another copy can still run
* Multiple copies can run in parallel on multiple CPU cores

* Example: a web server should handle multiple requests at a time
* One option: have multiple processes running the same program @ % @

e Disadvantage: too much memory consumed by identical memory images

* Better option: use threads = light weight processes

* A process can create multiple threads (default: single thread)
* Multiple threads share same memory image of process, saves memory
* Threads run independently on same code (if one blocks, another can still run)
* Threads can run in parallel on multiple cores at same time

™) s

Understanding threads ©— #c % |Coder |
’ Ao

* Multiple threads of a process share the same code, global/static M/
variables allocated at compile time, and heap |

. Tﬁ@s execute independently on the process code
* Each thread has its own separate CPU context
* Each thread’s PC is pointing to different instructions

* As a result, each thread has a separate stack
* Each thread calls functions independently, has to store context separately

* Inside the OS, each thread has its separate thread control block (TCB),
context stored in TCB when not running

* TCBs of threads belonging to same process share some common information
of the PCB (e.g., details of memory image, I/O connections)

POSIX threads —

void f1() {

* In Linux, POSIX threads (pthreads) library allows -
creation of multiple threadsina process

* Each thread is given a start function where its
execution begins

* Threads execute independently from parent after creation :
e Parent can wait for threads to finish (optional) main() {

* Threads created with pthreads treated as seFarate
entities by OS scheduler, can run concurrently on

void f2() {

pthread_tt1, t2
same CPU core, or in parallel on multiple cores pthread_create(&t1, .., 1,..)

: w (0S is aware of them) pthread_create(&t2, .., f2,..)

» Several such threading libraries exist

* Not all threading libraries guarantee independent pthread_join(t1, ..)
scheduling at the OS level, may exist only for ease of othread_join(t2, ..)

programming for user (user-level threads)

Shared data access

* Threads of a program share global/static
variables and heap data

* What happens when threads concurrently
access shared data?

* Example: two threads created, each
increments shared counter 1000 times
* We expect final counter value to be 2000
* In reality: value slightly smaller than 2000

* Concurrent access of shared data is tricky!

int counter;
void start_fn() {

for(int i=0; i < 1000; i++)
counter = counter + 1

}

main() {
counter=0

pthread_tt1, t2
pthread create(&t1,.., start_fn, ..)
pthread create(&t2, .., start_fn,..)

pthread join(t1, ..)
pthread _join(t2, ..)

print counter

Understanding shared data access

* The C code “counter = counter + 1” is compiled into multiple instructions

* Load counter variable from memory into register
* Increment register
 Store register back into memory of counter variable

Ve% f— Corarndtne

.\.—-—
50 ;C@’(M\VLOI/

 What happens when two threads run this line of code concurrently?

* Counteris O initially

* T1 loads counter into register, increment reg
* Context switch, register (value 1) saved

* T2 runs, loads counter O from memory

* T2 increments register, stores to memory

* T1 resumes, stores register value to counter
* Counter value rewritten to 1 again

* Final counter value is 1, expected value is 2

T1

load counter = reg
reg=reg+1 |

(context switch, save reg)

T2

&
load counter = reg
reg=reg+1 |
store reg = counter |

(resume, restore reg)
store reg —> counter |

P2
O5

. . . Pl
Race conditions, critical sections c

\~_

* Incorrect execution of code due to concurrency is called race condition
* Due to unfortunate timing of context switches, atomicity of data update violated
* Not just counters, can happen with any data structures
* User code cannot disable interrupts or context switches

* Race conditions happen when we have concurrent execution on shared data

* Threads sharing common data in memory image
* Processes in kernel mode sharing OS data structures ? ? ?
* (Single-threaded processes in user mode do not share any data)

* We require mutual exclusion on some parts of code
* Concurrent execution by multiple threads should not be permitted

* Parts of program that need to be executed with mutual exclusion for correct
operation are called critical sections

* Present in multi-threaded programs, OS code

Using locks

* Locks are special variables that provide
mutual exclusion
* Provided by threading libraries
* Can call lock/acquire and unlock/release
functions on a lock

* When a thread T1 acquires a lock, another
thread T2 cannot acquire same lock

* Execution of T2 stops at the lock statement
e T2 can proceed only after T1 releases the lock

* Acquire lock =2 critical section = release lock

ensures mutual exclusion in critical section

int counter;
pthread_mutex_t m;

void start_fn() {

for(int i=0; i < 1000; i++) {
pthread_mutex_lock(&m)
counter = counter + 1
pthread_mutex_unlock(&m)

}

main() {
counter=0

pthread_tt1, t2
pthread create(&t1,.., start_fn, ..)
pthread create(&t2, .., start_fn,..)

pthread_join(t1, ..)
pthread_join(t2, ..)

print counter

Implementing locks

* What is happening inside the lock/unlock ¢c
functions? How are locks implemented?

* Example of incorrect lock implementation
* Use bool isLocked to indicate lock status
* To acquire lock, a thread waits until lock is free

T1

and then proceeds to acquire it

while(isLocked);
isLocked = true
T

CRITICAL SECTION

isLocked = false

while(isLocked);
while(isLocked);
while(isLocked);
while(isLocked);
isLocked = true

CRITICAL SECTION

T2

bool isLocked = false

void acquire_lock() {
while(isLocked); //wait
isLocked = true

}

void release_lock() {
isLocked = false

}

while(isLocked);
\(corngt switch, PC saved)

while(isLocked);
isLocked = true
CRITICAL SECTION

(resumes execution)
isLocked = true
CRITICAL SECTION

T2

Hardware atomic instructions E___..

* Need a way to check a variable and set its value atomically
* No context switch between checking lock variable to be free and setting it to be true
* But user programs have no control over context switches

* Solution: use hardware atomic instructions
* Example: test-and-set sets value of variable and returns old value

* Simple lock can be implemented using test-and-set instruction
* If test-and-set(isLocked, true) returns true, it means lock is held by someone, wait
e |f test-and-set(isLoclée\d,Eue) returns false, lock was free and has been acquired

* Single CPU instruction is both checking lock to be free and setting it to be
true atomically, cannot be interrupted in between

bool isLocked = false

void acquire_lock() {
while(test-and-set(isLocked, true) == true); //wait

}

Spinlock vs. sleeping mutex ot ()

* Simple lock implementation seen here is a spinlock

* If thread T1 has acquired lock, and thread Mk then T2 will keep
spinning in a while loop till lock is free

* Another implementation option: thread can go to sleep (be blocked) while
waiting for lock, saving CPU cycles _
* OS blocks waiting thread, context switch to another thread/process _(,l i 2‘

e Such locks are called (ileeping) mutex [A>

* Threading libraries provide APls for both spinlocks and sleeping

* Better to use spinlock if locks are expected to be held for short time, avoid context
switch overhead

* Better to use sleeping mutex if critical sections are long

s lock
Guidelines for using locks °]’ Z / f

—> LA U

 When writing multithreaded programs, careful locking discipline
* Protect each shared data structure with one lock
* Locks can be coarse-grained (one big fat lock) or fine-grained (many smaller locks)

* Any thread wanting to access shared data must acquire corresponding lock before
access, release lock after access

* Good practice to acquire locks for both reading and writing data

 Why locks for reading? We do not want to read incorrect data while another thread S g
is concurrently updating the data

* Some libraries provide separate locks for reading and writing, allowing multiple : j
threads to concurrently read data if no otTTe—r’tﬁrgead is writing |

* If using third-party libraries in multi-threaded programs, check if the library
is thread-safe
* Thread-safe implementations work correctly with concurrent access

Summary

* In today’s lecture:
* Threads for concurrency and parallelism v
e Race conditions, critical sections v
* Locks: usage and implementation v
* Hardware atomic instructions -

* Try to write simple multi-threaded programs, observe race conditions,
and fix them using locks

* Pthreads APl is simple and easy to use
~HTedis AR

