Design and Engineering of Computer Systems

Lecture 9:
CPU scheduling policies

Mythili Vutukuru
IIT Bombay

OS scheduler i) () 12

* OS scheduler schedules process on CPU cores

* One process at a time per CPU core
* Processes and kernel-level threads are scheduled similarly

* Scheduling policy: which one of the ready/runnable processes should
be run next on a given CPU core?

* Mechanism of context switching (save context of old process in its kernel
stack/PCB and restore context of new process) is independent of policy

* Simple scheduling policies have good theoretical guarantees, but not
practical for real operating systems
* Real-life schedulers are very complex, involve many heuristics

Preemptive vs. non preemptive schedulers

P2
Pl ﬁ
* When is the OS scheduler invoked to trigger a context switch? /
* Only when a process is in kernel mode for a trap X/]
Ko

* Non-preemptive scheduler performs only voluntary context switches
* Process makes blocking system call
* Process has exited or has been terminated

* Preemptive scheduler performs involuntary context switches also
* Process can be context switched out even if process is still runnable/ready
e OS can ensure that no process runs for too long on CPU, starving others

* Timer interrupts: special interrupts that go off periodically to trap to OS
* Used by OS to get back control, trigger involuntary context switches

* Modern systems use preemptive schedulers
* Process can be context switched out any time in its execution

& > K

Goals of CPU scheduling policy

* Maximize utilization: efficient use of CPU hardware

* Minimize completion time of a process (time from process creation to
completion)
* Minimize response time of a process (time from process creation to first
time it is run)
* Important for interactive processes

* Fairness: all processes get a fair share of CPU
e Can account for priorities also

* Low overhead of scheduling policy
* Scheduler does not take too long to make a decision (even with large #processes)
* Scheduler does not cause too many context switches (~1 microsecond to switch)

r—"r2—-r—

Simplest policy: First In First Out .

* Newly created processes are put in a FIFO queue, scheduler runs them
one after another from queue

* Non-preemptive: process allowed to run till it terminates or blocks
* When process unblocks, the next run is separate “job”, added to queue again

* Problem: short processes can get stuck behind big processes
* Response time of interactive processes may be poor

* Example schedule: P1 (1-5), P2 (6-8), P3 (9 to 10)

P2 P>
>& —> <—~

P
CPU time Arrives at
needed end of time
(units) unit
P1 5 0

P2 3 1
P3 2 3

Shortest Job First (SJF)

* Assume CPU burst of a process (amount of time a process runs on CPU
until termination/blocking) is known

 Pick process with smallest CPU burst to run next, non-preemptive
* Store processes in a heap-like data structure, extract process with min CPU burst

Provably optimal average completion time when all processes arrive at the
same time

* But short processes that arrive late can still get stuck behind long ones

 Example schedule: P1 (1-5), P3 (6-7), P2 (8-10)

2 Pl
m CPU burst | Arrival time 7 P -
W~ €
P1 5 0 7? /r /]‘
P2 3 1

d P 3
P3 2 3

Shortest Remaining Time First (SRTF)

* Preemptive version of SJF

* A newly arrived process can preempt a running process, if CPU burst
of new process is shorter than remaining time of running process

* Avoids problem of short process getting stuck behind long one

* Example schedule: P1 runs for 1 unit, P2 (2-4), P3 (5-6), P1 (7-10)

Process | CPUburst | Arrval time Pl = P T
p1 5 4 0 ’)\ ﬁT T

P2 @ \ 1 o\ 3 P2
P3 @ 3

Round Robin (RR) / Welghted Fair Queuemg (WFQ)

* Processes are run one after the other for a time slice each, falrly sharing CPU

e Can also assign different weights or priorities to processes (can be set by users)
* Time slice will be in proportion to the weight or priority

* Preemptive policy: timer interrupt allows enforcing context switch after time slice

Good for fairness and response time
* Time slice should not be too big, for good responsiveness

Real life schedulers may not be able to enforce time slice exactly
* What if timer interrupt is not exactly aligned with time slice?
* What if process blocks before its time slice?

* Practical modification: keep track of run time of process, schedule process that
has used least fraction of its fair share

* Compensate excess/deficit running time in future time slices

Linux scheduler is a variant of weighted fair queueing

Ay

Multi-level feedback queue (MLFQ)| #—o—o—

Ao

L
* Multiple queues, one for each priority level OY—o———o— 0o U

* Schedule processes from highest priority queue to lowest
* Use round robin scheduling for processes within same priority level

* Priority set by user or OS, but decays with age
* Job that uses up its time slice at a priority level goes to lower priority level

* Why? Ensures short |/O0-bound processes that don’t use their full slice get
priority over long CPU-bound processes that use their fair share all the time

* Periodically reset all processes to highest priority level to avoid
starvation of low priority or CPU-bound processes

s, JOT) T T)L
Multicore scheduling F]ﬂ H

» Scheduling decision needs to be made separately for each CPU core

* Do we bind a process to a particular CPU core always, or do we let a process
run on any CPU core that is free?

* Is the queue of ready processes common to all cores, or maintained per core?

* Ensuring a process runs on the same core as far as possible is better Cove

* Cache locality: process-related memory is likely to be in CPU caches of the core [

* In NUMA systems, better to run process on core that is close to the RAM region that
has process memory

* Per-core queue of ready processes avoids synchronization across cores L_Q—/J

e But, we must be flexible too
* If CPU core overloaded, some of its processes must move to another core
* Load balancing across cores to ensure uniform workload distribution

Summary

* In this lecture:
* Scheduling policy: goals v
* Example policies: FIFO, SJF, SRTF, RR, WFQ, MLFQ v
* Considerations for multicore systems .

* Think of examples of scheduling policies in real life systems. Do you
see queues in daily life? What kind of scheduling policies do they use?

