
Deep-dive into Data Plane Development Kit
(DPDK)

CS 744

Slides by: Diptyaroop Maji, Nilesh Unhale

Course Instructor: Prof. Umesh Bellur

 Department of Computer Science & Engineering
Indian Institute of Technology Bombay

Prologue

❖ Prereq: Lecture on kernel bypass

❖ Kernel bypass lecture handles theoretical aspects

❖ This lecture: more on implementation/hands-on approach

❖ Implementation designs: Run-to-completion vs Pipeline

❖ Installing & Compiling DPDK

❖ Running a simple DPDK application

Implementation designs

RX Process TX
RX

Process

TX

NIC

CPU Core

Tx to Worker
Core

Rx from
Master Core

NIC

Run-to-Completion Pipeline
Master Core Worker Core

Run-to-completion model

NIC

Process
pkt

Ethernet IP UDP Payload

TXQ_1 RXQ_1 RXQ_n TXQ_n

Core 1

. . .
Core 2 Core n

DPDK

RSS in NIC

Pipeline model

NICTXQ_1 RXQ_1 RXQ_n TXQ_n

DPDK

Master
Core 1

Master
Core M

Process
pkt

Worker
Core 1

Ethernet IP UDP Payload

Ethernet IP UDP Payload

Worker
Core W

RSS on NIC not compulsory

Packets can be
distributed to different
cores in userspace

Run-to-Completion(RTC) vs Pipeline

Run-to-completion (RTC) Pipeline

Pros

❖ Easily scalable.

❖ Less userspace processing

overhead (no inter-core

communication)

❖ Easily scalable.

❖ No h/w support needed to

distribute packets to other

cores.

Cons

❖ H/W support needed (Eg. To

distribute packets to different Rx

queues, good RSS function

support required in NIC)

❖ More userspace processing

overhead (inter-core

communication via rings)

Installing DPDK
❖ Check if h/w supports DPDK (DPDK compatibility)
❖ Clone DPDK from GIT (DPDK GIT repository)
❖ Run the following steps (DPDK version <= 19.11):

➢ (running script can be found in <path_to_dpdk>/usertools)

Run dpdk-setup.sh
script

Compile drivers and
application

Bind drivers to
DPDK

Run
Application

Insert IGB_UIO
(PMD) kernel

module

Reserve
hugepagesDone

https://core.dpdk.org/supported/
https://github.com/DPDK/dpdk

Let’s look at an example

L2 forwarding sample application
(click here to know more)

https://doc.dpdk.org/guides/sample_app_ug/l2_forward_real_virtual.html

L2 forwarding sample application

Load
generator
(Server A)

NIC port 0 NIC port 0

DPDK

Server B, running L2-fwd

Ethernet
(Src:MAC_A,
Dst: MAC_B)

IP packet

Ethernet
(Src:MAC_B,
Dst: MAC_A)

IP packet
Ethernet

(Src:MAC_A,
Dst: MAC_B)

IP packet

Ethernet
(Src:MAC_B,
Dst: MAC_A)

IP packet

1. Rx Ethernet pkts

2. Swap MAC

4. Tx packets

L2 forwarding sample application

Load
generator
(Server A)

NIC port 0 NIC port 0

DPDK driver

Server B, running L2-fwd

Ethernet
(Src:MAC_A,
Dst: MAC_B)

IP packet

Ethernet
(Src:MAC_B,
Dst: MAC_A)

IP packet

Ethernet
(Src:MAC_B,
Dst: MAC_A)

IP packet

1. Rx Ethernet pkts
2. Show packet contents
3. Swap MAC
4. Tx packets

❖ Command line arguments (EAL parameters):
➢ -w <port bus address>: Whitelisting the port to be used

■ -w 81:00.1
➢ -c <mask>: Core mask in hex, specifying no. of cores to be used

■ -c 1
➢ Check out this link to know more.

❖ Application specific arguments:
➢ -p <portMask>: Port mask in hex, specifying no. of ports to be used

■ -p 0x1

Ex : sudo ./build/l2fwd -w 81:00.1 -c 1 -- -p 0x1

L2-fwd: Explanation

https://doc.dpdk.org/guides/linux_gsg/linux_eal_parameters.html

L2-fwd: Explanation
❖ Initializing the Environment Abstraction Layer (EAL):

➢ This should be the first API to be called. It initializes the EAL layer & makes way
for the application to use the DPDK framework.

ret = rte_eal_init(argc, argv);

➢ argc: No. of command line arguments (both EAL & application specific
parameters)

➢ argv: Array storing the command line arguments

➢ ret: On success, ret stores the no. of parsed arguments, which is equal to the
no. of EAL parameters passed. The application can now use argc & argv to
parse application specific parameters like any other normal C/C++ program
using int main(int argc, char *argv[]).

L2-fwd: Explanation
❖ Setting up ports/queues:

➢ Firstly, the NIC port must be configured.
rte_eth_dev_configure();

■ No. of Rx/Tx queues, whether NIC should perform RSS etc.

➢ Setting up Tx queue(s).
rte_eth_tx_queue_setup();

■ No. of Tx ring descriptors to allot, what Tx offloading feature to be enabled etc.

➢ Setting up Rx queue(s).
rte_eth_rx_queue_setup();

■ No. of Rx ring descriptors to allot, what Rx offloading feature to be enabled etc.

➢ Finally, starting the respective port.
rte_eth_dev_start();

■ The respective port can now start receiving & transmitting packets.

❖ You can check out in detail about these APIs here

https://doc.dpdk.org/api/rte__ethdev_8h.html#a1a7d3a20b102fee222541fda50fd87bd

L2-fwd: Explanation
❖ Receiving packets:

 nb_rx = rte_eth_rx_burst(portid, qNo, pkts_burst, MAX_PKT_BURST);

➢ portid: ID of NIC port which will receive the incoming packets.

➢ qNo: This is actually the Rx queue no. of that particular port where packets will
be received and queued till the DPDK driver sends them to the userspace.

➢ pkts_burst: struct rte_mbuf *pkts_burst[MAX_PKT_BURST];

 Array of structure to store the incoming packets.

➢ MAX_PKT_BURST: Max. no. of packets permitted to be received at a time.

➢ nb_rx: Actual no. of packets received (< = MAX_PKT_BURST)

L2-fwd: Explanation
❖ Transmitting packets:

 nb_tx = rte_eth_tx_burst(portid, qNo, pkts_burst, MAX_PKT_BURST);

➢ portid: ID of NIC port which will transmit the outgoing packets.

➢ qNo: Tx queue no. of that particular port where packets will be queued and till
NIC sends them out.

➢ pkts_burst: struct rte_mbuf *pkts_burst[MAX_PKT_BURST];

 Array of structure to store the outgoing packets.

➢ MAX_PKT_BURST: Max. no. of packets permitted to be transmitted at a time.

➢ nb_tx: Actual no. of packets transmitted (< = MAX_PKT_BURST)

DPDK and modern NICs

❖ DPDK provides many APIs to take advantage of feature on NICs

❖ Some packet processing can be offloaded to h/w (NIC)

❖ Some features include

➢ Checksum verification/computation offloading (L3 and L4)

➢ Distributing packets to separate rx queues based on particular header
(RSS)

➢ Parsing L3/L4 headers and taking some simple actions (drop/forward etc.)

➢ To check (or set) what offloading feature NIC has

■ In DPDK Application -- API

■ Without DPDK: ethtool -k <iface> (link1, link2)

https://doc.dpdk.org/guides/nics/features.html
https://docs.gz.ro/tuning-network-cards-on-linux.html#:~:text=Most%20of%20these%20offload%20features,along%20with%20the%20desired%20features.
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/configuring-ethtool-offload-features-using-networkmanager_configuring-and-managing-networking

Common packet generators

Easy startup guide
❖ Quick Start: https://core.dpdk.org/doc/quick-start/

Compiling DPDK Applications
❖ Exporting Environment variables

➢ RTE_SDK - Points to the DPDK installation directory.
■ Eg: export RTE_SDK=$HOME/DPDK

➢ RTE_TARGET - Points to the DPDK target environment directory.
■ Eg: export RTE_TARGET=x86_64-native-linux-gcc

❖ Go to desired DPDK Application provided
➢ Eg. cd path/to/dpdk/examples/helloworld

❖ Compile (generally using make)
❖ Application executable will be built in <path_to_app>/build/app/

❖ Testpmd
❖ nping
❖ iperf
❖ others

https://core.dpdk.org/doc/quick-start/
https://doc.dpdk.org/guides/testpmd_app_ug/
http://manpages.ubuntu.com/manpages/trusty/man1/nping.1.html
https://iperf.fr/iperf-doc.php
https://www.networkstraining.com/best-network-traffic-packet-generator-tools/

Further Reading
❖ DPDK in layman’s terms: link1 link2 link3
❖ DPDK overview : https://doc.dpdk.org/guides/prog_guide/overview.html
❖ <path_to_dpdk>/apps and <path_to_dpdk>/examples

➢ L3fwd (user guide)
➢ helloworld
➢ Testpmd (user guide)

❖ Short Notes on DPDK installation and app: Click Here
❖ DPDK APIs -- (Comprehensive list of APIs)

➢ Ethernet devices APIs (Eg. Rx/Tx, configuring queues)
➢ DPDK ring (Lockless FIFO queue)
➢ DPDK packet data structure -- similar to sk_buff(kernel socket buffer) which holds

network packets
➢ Launching a function on particular CPU core

❖ Below are optional references
➢ User level TCP stack : mTCP [paper]
➢ OpenVSwitch with DPDK: getting started
➢ DPDK on SRIOV [link] VFs: link1 link2

https://www.linkedin.com/pulse/dpdk-layman-aayush-shrut
https://www.slideshare.net/garyachy/dpdk-44585840
https://blog.selectel.com/introduction-dpdk-architecture-principles/
https://doc.dpdk.org/guides/prog_guide/overview.html
https://doc.dpdk.org/guides/sample_app_ug/l3_forward.html
https://doc.dpdk.org/guides/testpmd_app_ug/
https://www.dropbox.com/s/zbg0bgiaiec2hnq/DPDK%20user%20guide%20-%20draft.txt?dl=0
https://doc.dpdk.org/api/
https://doc.dpdk.org/api/rte__ethdev_8h.html
https://doc.dpdk.org/guides/prog_guide/ring_lib.html
https://doc.dpdk.org/guides/prog_guide/mbuf_lib.html
https://elixir.bootlin.com/linux/latest/source/include/linux/skbuff.h
https://stackoverflow.com/questions/53691760/what-are-the-differences-between-kernel-buffer-tcp-socket-buffer-and-sliding-wi#:~:text=The%20kernel%20prepares%20to%20receive,context%20of%20the%20packets%20arrival.
https://doc.dpdk.org/api/rte__launch_8h.html
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/jeong
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-jeong.pdf
https://docs.openvswitch.org/en/latest/intro/install/dpdk/
https://www.youtube.com/watch?v=hRHsk8Nycdg
https://en.wikipedia.org/wiki/Single-root_input/output_virtualization
https://doc.dpdk.org/guides/nics/intel_vf.html
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html/network_functions_virtualization_configuration_guide/assembly-config-sriov-dpdk-vxlan-vlan

Errata
❖ Video time 26:25 -- L3/L4 headers are parsed in the NIC itself (in the video, it is mistakenly

said that L3/L4 headers are parsed in the RSS itself)

❖ In the demo, while calculating TX speed, no. of packets sent is wrong. It’s value is equal to
total packets received instead of total packets sent. However, we can calculate the TX
speed using the formula:

Tx speed (Gbps) = No. of packets (Mpps) * Packet Size * 8 / (Time * (10^9))

In this case, no. of packets sent = 193913799 (& NOT 193920956)

 Packet size = 642 B

 Time = 30 secs

Therefore, Tx speed = 33.198 Gbps (~ Rx speed)

Backup Slides

